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Введение Синтетическая биология — направление, которое развивает генную 

инженерию, переходя от перемещения некоторых генов среди организмов, 

к формированию искусственного генома. Генетический осциллятор 

(репрессилятор) 1-ая в синтетической биологии генная регуляторная сеть, 

искусственно сконструированная в 2000 г. Осциллятор искусственного 

происхождения в клетке, основан на функциях данных клеток, который 

схож с электрической схемой, он также может быть выключен или включен, 

другими словами, генетические часы, которые позволяют совершать процессы, 

происходящие в бактериальных клетках. Существует еще один механизм, 

известный как «чувство кворума» («quorum sensing», далее QS) — способность 

микроорганизмов координировать собственные действия за счет посредством 

секреции молекулярных сигналов, с его помощью можно регулировать колонию 

клеток.  

Исследование генетических осцилляторов искусственного происхождения 

в первую очередь актуально, поскольку они представляют собой простые 

модификациями таких ключевых биологических процессов, как клеточный цикл 

и циркадные ритмы. Их изучение необходимо для понимания естественных 

генных сетей и разработки биотехнологических приложений. Кроме того, 

данная тема важна для исследователей, работающих в области микробиологии и 

генетики микроорганизмов, а еще в прикладных областях (врачебная наука, 

аграрное производство и др.).  

В дополнение к генетическим осцилляторам, изучение QS систем также 

является актуальным. Поскольку они имеют немаловажную значимость в 

регуляции большого количества клеточных процессов у бактерий. Однако QS 

системы достаточно детально изучены лишь у небольшого количества бактерий 

и мало исследованы молекулярные механизмы QS регуляции различных типов и 

роль QS систем в метаболизме микроорганизмов. По этой причине бесспорно, 

явление QS регуляции требует последующих глубоких и подробных 

исследований. 
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Для создания искусственного генома с помощью генетического 

осциллятора требуется наличие сложных математических моделей, которые 

будут описывать работу репрессилятора.  

Основной целью данной дипломной работы является теоретическое 

описание генетического осциллятора и его анализ математического 

моделирования для реализации в виртуальной среде MultiSim в виде 

схемотехнической модели. 

В задачи данной работы входят: 

• Обзор литературы по тематике генетических осцилляторов. 

• Описание механизма «чувство кворума» («quorum sensing», QS). 

• Описание генетического осциллятора и его видов. 

• Изучение математического моделирования и принципа работы 

генетического осциллятора. 

• Реализация математической модели генетического осциллятора в 

виртуальной среде MultiSim в схемотехническом виде. 

1. Quorum sensing «чувство кворума». Феномен quorum sensing (QS) 

регуляции был обнаружен впервые около 30 лет назад при изучении 

биолюминесценции у светящейся морской бактерии Vibrio fischeri. Долгое 

время считалось, что QS регуляция используется только этой бактерией и 

только для регуляции весьма необычного в микробном мире процесса — 

биолюминесценции. Однако в последние 10 лет выяснилось, что QS 

регуляция широко распространена и что QS системы участвуют в контроле 

большого количества клеточных процессов. 

Системы типа QS играют ключевую роль во многих процессах бактериальной 

клетки. Они участвуют во взаимодействии бактерий с высшими организмами, 

регуляции вирулентности бактерий, формировании биопленок, регуляции 

экспрессии генов, связанных с синтезом токсинов, антибиотиков и других 
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вторичных метаболитов, а также различных ферментов и т.д. QS системы 

функционируют как глобальные факторы регуляции. Особый интерес вызывает 

роль QS в регуляции процессов взаимодействия патогенных бактерий с 

эукариотическим организмом. Как известно, инфекционный процесс происходит 

при достижении достаточно больших популяций патогенных бактерий, когда 

начинают функционировать QS системы регуляции. Увеличение концентрации 

сигнальных молекул в среде приводит к синхронному синтезу факторов 

вирулентности, способствующих разрушению тканей организма при инфекции. 

Такие скоординированные действия бактерий способствуют успешному 

преодолению ими иммунного ответа инфицированного организма. С помощью 

АИ (низкомолекулярные сигнальные молекулы — аутоиндукторы) 

осуществляется коммуникация (межклеточная передача информации) бактерий, 

принадлежащих к одному или разным видам, родам и даже семействам. 

Благодаря коммуникации бактерии могут скоординированно регулировать 

экспрессию генов во всей популяции, что способствует выживанию бактерий в 

неблагоприятных условиях среды. 

2. Генетический осциллятор – репрессилятор. Репрессилятором называют 

первую в синтетической биологии генную регуляторную сеть, 

искусственно сконструированную в Гарвардском университете в 2000 г. 

Синтетическая биология развивает генную инженерию (это комплекс 

методов, приемов и технологий, применяемых для проведения 

манипуляций с генами), переходя от перемещения нескольких генов между 

организмами к созданию искусственного генома. Геном в свою очередь - 

это совокупность наследственного материала, заключённого 

в клетке организма. Репрессилятор состоит как минимум из трёх 

элементов, генов и их промоторов, белковые продукты каждого из которых 

однонаправленно ингибируют транскрипцию соседнего гена. В 

биологических исследованиях репрессиляторы использовались для 

построения клеточных моделей и понимания функций клеток. Все 
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реперессиляторы в большей степени способны демонстрировать 

синхронизацию, присущую естественным биологическим системам и 

влияющим на них факторам. 

3. Математическая модель. Репрессиляторы это такие математические 

модели, которые описывают экспрессию генов и процессы синтеза белка. В 

клетках у нас есть определенные участки генов, которые экспрессируют и 

синтезируют определенные белки. Эти белки активируют экспрессию 

других генов, при этом белки, выделяемые вторыми генами, ингибируют 

экспрессию генов предыдущих. И они все вот так по колечку друг другу 

передаются. То есть есть один ген он активизирует следующий ген, 

следующий активизирует еще следующий, а последний активизирует 

первый ген. При этом синтез белка от первого подавляет третий, третий 

подавляет второй. Иными словами, они по такому кругу один другого 

активирует, а другой подавляет. Так по этому колечку передается 

активационный сигнал. Происходит регуляция белков в клетке. 

 Система дифференциальных уравнений, описывающих динамику 

репрессилятора с обратной связью, принимает вид: 

 

Нелинейность Хилла, представленная выше, описывается достаточно 

сложной функцией, но именно эта функция в модели даёт ингибирование, то 

есть определенные затухания. Такую нелинейность можно записать более 

простой функцией, которую легче реализовать в схемотехническом 

моделировании и радиофизическом эксперименте. 

 Систему уравнений, описывающих реперссилятор можно записать в виде: 

x'=b1*(-x+(1-x)*c*exp(-a*z)) 

y'=b2*(-y+(1-y)*c*exp(-a*x))                              
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z'=b3*(-z+(1-z)*c*exp(-a*y)+Q*(y+y1)) 

Такое преобразование нужно для дальнейшей реализации схемы в 

Multisim. 

 

4. Схемотехническое моделирование репрессилятора. Среда Multisim – это 

уникальная возможность моделирования и анализа электрических схем. У 

такого подхода есть множество преимуществ: экономия времени на 

конструировании, размещения деталей к режиму разводки без переключений 

режимов. Безрежимное редактирование – это наиболее эффективный способ 

размещения и соединения компонентов. Кроме традиционного анализа, 

Multisim позволяет пользователям подключать к схеме виртуальные приборы. 

Концепция виртуальных инструментов – это простой и быстрый способ 

увидеть результат с помощью имитации реальных событий. 

 

4.1 Система Ресслера. Опробуем аналоговое моделирование на более простой 

системе. В качестве примера возьмем классическую модель нелинейной 

динамики - систему Рёсслера. 

Запишем для системы Рёсслера дифференциальную систему уравнений: 

 

 

 

  

 

 

Перепишем данную систему в интегральной форме: 
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Построим схему в соответствии с этой системой уравнений в среде 

MULTISIM 

 

Рисунок 1 - Схемотехническая модель системы Ресслера в Multisim 
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Рисунок 2 – Фазовый портрет на осциллографе в среде Multisim для системы 
Ресслера 

 

 

Мы реализовали схемотехническую модель системы Ресслера в 

виртуальной среде Multisim. На фазовом портрете мы видим, что аттрактор в 

этом случае – хаотический аттрактор – фрактально устроенное множество, 

которое сосредоточено в ограниченной области фазового пространства, образ 

беспорядочных колебаний. 

 

4.2 Реализация генетического осциллятора в виртуальной среде 

MULTISIM. Аналогичным образом делаем схемотехническое 

моделирование репрессилятора. 

Для этого запишем систему уравнений для генетического осциллятора в 
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виде: 

x'=b1*(-x+(1-x)*c*exp(-a*z)) 

y'=b2*(-y+(1-y)*c*exp(-a*x))                              

z'=b3*(-z+(1-z)*c*exp(-a*y)+Q*(y+y1)) 

Построим схему в соответствии с этой системой уравнений  

 

Рисунок 3 – Схема репрессилятора в среде Multisim 
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Рисунок 4 – Фазовый портрет репрессилятора в Multisim 
 

На рисунке 4 представлен фазовый портрет реализованной 

схемотехнической модели генетического осциллятора в виртуальной среде 

Multisim. Временные реализации и фазовые портреты схемотехнической модели 

очень близки с численной моделью. Система уравнений репрессилятора 

представляет собой аттрактор-цикл – замкнутая кривая в фазовом пространстве. 

Заключение. В данной работе для достижения цели, были раскрыты понятие и 

сущность quorum sensing «чувство кворума», генетического осциллятора со 

всеми его характеристиками и математическими моделями; реализовано 

построение в среде Multisim схемы репрессилятора изображены его показания 

на виртуальном осциллографе.  

Построение экспериментов на реальных биологических объектах очень 

дорогостоящие и сложные процессы, поэтому есть математические модели, 

которые демонстрируют различную сложную динамику. Именно их мы и 

использовали в данной работе для того, чтобы проверить насколько эта 
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динамика является реальной для таких систем. Эти математические модели 

нужны для создания радиофизической модели, которая будет максимально 

приближено работать в соответствии с биологической моделью. Соответственно 

это может заменить эксперимент на биологических объектах или как минимум 

дать возможность отработать методологию такого эксперимента перед 

реальным.   

  

 

 
 

 


