
МИНОБРНАУКИ РОССИИ
Федеральное государственное бюджетное образовательное учреждение

высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ
ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ИМЕНИ Н. Г.ЧЕРНЫШЕВСКОГО»

Кафедра дискретной математики и информационных технологий

ИССЛЕДОВАНИЕ ЭФФЕКТИВНОСТИ ИСПОЛЬЗОВАНИЯ
ПАРАЛЛЕЛЬНЫХ ТЕХНОЛОГИЙ ПРИ ОБРАБОТКЕ

БОЛЬШИХ ОБЪЁМОВ ДАННЫХ В ИНФОРМАЦИОННЫХ
СИСТЕМАХ

АВТОРЕФЕРАТ МАГИСТЕРСКОЙ РАБОТЫ

студента 2 курса 271 группы
направления 09.04.01 — Информатика и вычислительная техника
факультета КНиИТ
Бени-Лам Али Нури Шавкат

Научный руководитель
доцент, к.ф.-м. н. А. Д.Панфёров

Заведующий кафедрой
доцент, к.ф.-м. н. Л. Б.Тяпаев

Саратов 2022

СОДЕРЖАНИЕ

ВВЕДЕНИЕ . 3
1 Большие данные – определения и организация хранения. 4
2 Использование параллелизма при обработке данных 6
3 Python – высокоуровневый язык для работы с данными 9
4 Постановка задачи анализа данных . 10
5 Программная реализация процедур анализа и результаты 11
ЗАКЛЮЧЕНИЕ . 13
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ . 14

ВВЕДЕНИЕ

Развитие вычислительной техники в первую очередь стимулировалось
потребностями в решении вычислительно сложных задач и максимально быст-
рой обработке критически важной информации. Однако постепенно, с про-
никновением информационных технологий в самые разнообразные области
человеческой деятельности, с формированием глобальной сетевой среды, по-
явился огромный объём оцифрованных данных и эти данные сами стали
предметом анализа с использованием мощных вычислительных систем.

Не смотря на продолжающийся прогресс в производительности ком-
пьютеров, обслуживающих конечных пользователей, объёмы доступной для
анализа информации давно переросли их возможности. Это обусловило по-
явления термина «большие данные», которым принято обозначать задачи по
обработке данных, для решения которых недостаточно ресурсов одиночной
вычислительной системы.

Работа с большими данными - область использования параллельных
технологий. Их приходится привлекать на всех этапах: сбора, хранения и
обработки. Масштаб используемого аппаратного параллелизма простирается
от многоядерных мультипроцессоров и до территориально распределенных
мультикомпьютерных систем.

Проблематика работы с большими массивами данных является одной
из наиболее актуальных областей в современных информационных техноло-
гиях. Целью представляемой работы является системное изложение методов
и подходов, используемых для анализа массивов данных, обзор программ-
ных инструментов используемых для этого и их демонстрация на примере
обработки данных, получаемых при моделировании поведения физических
систем.

Магистерская работа состоит из введения, пяти разделов, заключения,
списка использованных источников и приложения. Общий объём работы - 57
страниц, из них 41 страница - основное содержание, включая 14 рисунков,
список использованных источников включает 34 наименования.

3

1 Большие данные – определения и организация хранения

В первой части работы определяется используемая терминология и ха-
рактерные технологические особенности проблематики работы с большими
данными.

Эта область науки сформировалась недавно, в конце 2000-х годов. В на-
стоящее время Большие данные наиболее активно генерируются Интернетом
вещей. Наиболее популярное определение Big Data использует аббревиатуру
VVV. Под ней подразумеваются Volume, Velocity и Variety (объём, скорость
и многообразие) [1–3].

По имеющимся в свободном доступе данным в 2020 году мировой рынок
технологий Big Data составлял 138,9 млрд долларов, к 2025 году прогнозиру-
ется рост до 229,4 млрд долларов. Это соответствует темпу роста в 10,6% в
год, что много выше темпов роста самой мировой экономики. Уже сейчас без
использования технологий работы с большими данными компании не выдер-
живают конкуренцию, так как не могут обеспечивать достаточный уровень
клиентского сервиса.

Для хранения больших данных возможностей отдельных устройств и
обычных ОС оказывается недостаточно. Большие данные обычно хранятся
в распределенных файловых системах (distributed file systems - DFS) [4–6].
Стандартным свойством DFS является избыточность. Обеспечивается хра-
нение нескольких экземпляров данных на разных серверах, что гарантирует
их сохранение при сбоях. При этом дублирование данных может реализо-
вываться на разных уровнях: файлов или отдельных блоков. Пользователю
часто предоставляется возможность самому определять коэффициент избы-
точности. С помощью стандартного оборудования и открытых программных
средств для управления DFS (например, Apache Hadoop), можно реализовать
надежные хранилища данных с объёмом в несколько петабайт [7].

Аппаратные технологии, используемые для построения больших храни-
лищ данных, постоянно совершенствуются. Справедливо эмпирическое пра-
вило, согласно которому стоимость хранения обычно обратно пропорциональ-
на скорости доступа к данным. Поэтому медленные и относительно устарев-
шие системы с ленточными накопителями до сих пор могут использоваться
для хранения архивов. Обладая большими объёмами и низкой стоимостью,
они хорошо подходят для хранения огромного количества редко запрашивае-

4

мой информации. При организации иерархических систем с использованием
на разных уровнях различных аппаратных решений можно оптимально соче-
тать их преимущества и строить очень ёмкие хранилища с хорошим средним
временем выполнения запросов.

В случае распределенного сетевого хранилища его пространственный
масштаб может быть любым. От компактного размещения в одном ЦОДе
(центре обработки данных), до глобальной системы, связанной каналами Ин-
тернет. В распределенной системе хранения данные могут отправляться по
запросам клиентам или пересылаться между узлами хранилища. Операции
чтения и записи клиентских данных могут производиться с использованием
сразу нескольких узлов.

Предъявляемые к хранилищам данных требования зависят от области
их использования. Так, для данных о финансовых транзакциях и торговых
операциях характерен относительно короткий временной интервал их актив-
ного использования и затем они переходят в разряд архивных. В страховании,
банковской деятельности цикл операции может занимать месяцы и годы и все
это время соответствующие данные могут быть затребованы и должны быть
быстро доступны.

В случае работы с действительно большими данными становится прин-
ципиально важно, что структурированные данные намного легче понять и
обработать, в то время как многочисленные форматы неструктурированных
данных создают большие проблему. Однако оба типа данных играют свою
роль в эффективном анализе данных. Примеры трудно структурируемых
данных включают аудио, видео, текстовые документы и презентации.

5

2 Использование параллелизма при обработке данных

Во второй части работы представлены базовые обоснования применимо-
сти аппаратного и программного распараллеливания при работе с данными
и приведены примеры современных технологических решений.

Разработка программ для параллельных вычислительных систем тре-
бует соответствующей поддержки на уровне языков [8] и библиотек. Органи-
зация взаимодействия параллельных ветвей программы через передачу сооб-
щений (MPI - Message Passing Interface), вероятно, является наиболее широко
используемым вариантом параллельного программирования для мультиком-
пьютерных систем на сегодняшний день.

Возможны три способа реализации MPI и его взаимодействия с языка-
ми программирования:

— расширение стандартного языка последовательного программирования
библиотечными функциями;

— расширение стандартного языка последовательного программирования
специальными конструкциями;

— разработка нового языка.
На практике наиболее привычным и естественным является первый ва-

риант. Он позволяет отталкиваться от знакомого и хорошо освоенного языка
программирования. При этом подключение дополнительных библиотек так-
же вполне привычная и прозрачная процедура.

С массовым переходом на мультикомпьютеры при решении вычисли-
тельно сложных задач появились новые проблемы, связанные с оптимизацией
доступа к данным. В отличие от многопроцессорных ЭВМ с общей памятью,
на системах с распределенной памятью необходимо произвести не только рас-
пределение вычислений, но и распределение данных, а также обеспечить на
каждом процессоре доступ к удаленным данным, расположенным на других
вычислительных узлах. Согласованное распределение вычислений и данных
требует тщательного анализа всей программы, и ошибки могут привести к
катастрофическому замедлению выполнения программы [9].

Параллельное программирование для мультипроцессоров проще за счет
наличия общей памяти. В этом случае параллельная программа может пред-
ставлять собой систему нитей (threads), взаимодействующих посредством об-
щих переменных и примитивов синхронизации.

6

Первая попытка стандартизовать такую модель привела к появлению
проекта языка PCF Fortran. Однако, этот проект [10] не привлек широкого
внимания и, фактически, остался только на бумаге. Возможно, что причиной
этого было снижение интереса к мультипроцессорам и всеобщее увлечение
мультикомпьютерами и HPF. Однако, несколько лет спустя ситуация сильно
изменилась. Успехи в развитии элементной базы сделали экономически вы-
годным создавать мультипроцессоры. Крупнейшие производители компьюте-
ров и программного обеспечения объединили свои усилия и в октябре 1997
года выпустили описание языка OpenMP Fortran – расширение языка Фор-
тран. Немного позже, в 1998 году, вышло аналогичное расширение для языка
Си.

Ориентация на мультипроцессоры стала особенно актуальной после 2004
года, когда стало ясно, что дальнейший быстрый рост тактовых частот про-
блематичен. С этого момента началось быстрое развитие технологии мно-
гоядерных процессоров. Ресурс увеличения плотности активных элементов
на чипе сохраняется до настоящего времени и именно это сделало много-
ядерные процессоры привлекательными для повышения производительности
вычислений.

В настоящее время актуальны несколько подходов в распараллеливании
на многоядерных процессорах:

— на уровне экземпляров виртуальных машин;
— на уровне процессов;
— на уровне потоков;
— на уровне инструкций.

Не смотря на рост производительности современных мультипроцессо-
ров с общей памятью за счет увеличения количества ядер в них, при необ-
ходимости выхода за границы их возможностей, как и ранее, приходится ис-
пользовать мультикомпьютеры. В этой области было сосредоточено много
усилий разработчиков и они принесли результаты. Для распределенной об-
работки очень больших объёмов данных компанией Google была разработана
модель вычислений MapReduce. Она была реализована в виде платформы
(фреймворка) в первую очередь для обеспечения функционирования основ-
ного инструмента компании – системы индексации и поиска информации
в глобальной сети Интернет. Поисковая система Google использует вычис-

7

лительные мощности более чем миллиона серверов ежедневно обрабатывая
миллиарды пользовательских запросов и десятки петабайт данных.

Версия проекта с открытым исходным кодом имеет название Hadoop.
Важным элементом проекта является распределенная файловая система HDFS
(Hadoop Distributed File System). Она обеспечивает масштабирование систе-
мы хранения и её отказоустойчивость для гарантированной сохранности дан-
ных путем распределения нескольких экземпляров реплик данных на различ-
ные сервера. HDFS может использоваться в качестве распределенной файло-
вой системы общего назначения или в качестве основы Hadoop системы для
обработки данных с использованием процедур MapReduce.

Узлы хранения данных (DataNode, Node) хранят реплики данных, вы-
полняют команды управляющего узла по их чтению и записи, отправке дан-
ных клиентам. Потоки данных между узлами хранения и клиентами переда-
ются напрямую. NameNode только выдает необходимые команды. Наконец,
клиенты системы. С учетом имеющихся прав доступа, они могут создавать,
удалять, читать, записывать, переименовывать и перемещать файлы и ката-
логи.

Для обеспечения сохранности данных, как было отмечено выше, HDFS
использует реплицирование данных в нескольких экземплярах. Распределен-
ное хранение реализуется на уровне отдельных блоков. Пользователь имеет
возможность явно задавать количество реплик своих данных (по умолчанию
– 3) и размер используемых блоков (по умолчанию - 64 Мб).

Работа MapReduce состоит из двух этапов: распределение задачи по до-
ступным вычислительным узлам (map - картирование) и сбор с последующей
финальной обработкой полученных данных (reduce - редукция). Название
возникло как слияние имен используемых при этом управляющих функций
map и reduce.

Область применения этой технологии – системы из десятков, сотен и
даже тысяч серверных узлов, хранящие и обслуживающие десятки петабайт
данных.

8

3 Python – высокоуровневый язык для работы с данными

В третьей части работы представлен язык программирования Python
и специализировавнные библиотеки, ориентированные на обработку данных.
Они предоставляют готовые реализации многих необходимых алгоритмов, су-
щественно упрощая процедуру написания сложных прикладных решений [11].
Наиболее популярны и востребованы: NumPy, SciPy, Pandas, StatsModels,
Matplotlib, Seaborn, Plotly, Bokeh, Scikit-Learn, Keras. Представлены их крат-
кие характеристики.

Отдельное внимание уделено инструментам для параллельной рабо-
ты. На мощных современных мультипроцессорах количество вычислитель-
ных ядер может быть более ста. Такие вычислительные системы могут успеш-
но работать с достаточно большими объёмами данных.

Для реализации аппаратного параллелизма необходимо обеспечить его
эффективное использование на программном уровне. Особенностью Python
является то, что это интерпретирующий язык программирования и для его
интерпретатора синхронизация одновременной работы множества потоков в
режиме реального параллелизма является непосильной задачей. По этой при-
чине интерпретатором используется Python Global Interpreter Lock (GIL) -
блокировка, позволяющая только одному потоку управлять интерпретатором
Python. При запуске одного экземпляра интерпретатора вне зависимости от
количества потоков в любой момент времени будет выполняться только один
конкретный поток. Поэтому аппаратный параллелизм в Python приходится
использовать с помощью создания дополнительных процессов. Инструмен-
том для этого служит пакет multiprocessing . Порождение новых процессов
имеет смысл до тех пор, пока каждому из них может быть предоставлен для
работы собственный процессор (ядро). Увеличение числа процессов сверх ко-
личества имеющихся процессоров только увеличит накладные расходы и не
приведет к увеличению скорости работы программы.

Пакет multiprocessing предлагает набор методов для порождения про-
цессов и взаимодействия с ними. Когда необходимо выполнять одинаковый
набор операций с различными экземплярами выборки одновременно (парал-
лелизм по данным) удобнее инструменты из класса Pool . Методы этого клас-
са apply(), map() и starmap() обеспечивают запуск любой функции в па-
раллельном режиме.

9

4 Постановка задачи анализа данных

В четвертой части работы определены характеристики массива данных,
предоставлявшихся для обработки, и решавшиеся задачи.

Исследование эффективности использования параллельных технологий
при обработке больших объёмов данных проводилось применительно к задаче
промежуточного анализа результатов научного моделирования.

В качестве примера тестовой задачи рассматриваются результаты мо-
делирования действия на графен короткого лазерного импульса. Основные
характеристики моделируемых процессов определяются через функцию рас-
пределения f1(p1, p2, t). Была поставлена задача реализовать ряд процедур
поиска, сортировки и анализа данных из трехмерного массива результатов с
индексами k, l,m, каждый элемент которого, в свою очередь, сформирован в
виде одномерного массива вида

{p1k, p2l, tm, f1(p1k, p2l, tm), f2(p1k, p2l, tm), f3(p1k, p2l, tm)}.

Первая процедура – поиск абсолютного максимума функции распреде-
ления f1(p1k, p2l, tm).

Вторая процедура – построение двумерного среза для заданного значе-
ния tm.

Третья процедура – построение двумерного массива максимальных зна-
чений f1 за весь интервал наблюдения для каждой точки (p1k, p2l).

Четвертая процедура – построение двумерного массива средних значе-
ний f1 за весь интервал наблюдения для каждой точки (p1k, p2l).

10

5 Программная реализация процедур анализа и результаты

Пятая часть работы демонстрирует особенности реализованного про-
граммного решения и полученные результаты.

Для программной реализации процедур анализа данных моделирова-
ния было разработано приложение на языке Python с использованием ряда
описанных ранее библиотек. Базовые математические операции выполняются
с использованием функций из библиотеки numpy , для анализа данных при-
менены возможности pandas , распараллеливание процедур анализа реали-
зовано с использованием multiprocessing и черновая отрисовка результатов
выполняется библиотекой matplotlib.pyplot .

Организация многопроцессного режима работы реализована методом
pool.apply() класса pool модуля multiprocessing . Для оптимального ис-
пользования ресурсов системы перед запуском пула процессов пользователю
выводится информация о количестве доступных процессоров и предоставля-
ется возможность явно задать количество запускаемых процессов. Информа-
ция о количестве процессоров определяется функцией cpu.count() модуля
multiprocessing .

Отдельным предметом исследования была эффективность использова-
ния аппаратного параллелизма разработанным кодом. Для этого оценивалось
время выполнения одинаковых тестовых заданий по формированию двумер-
ных массивов максимальных и средних значений анализируемой функции
при различном числе запускаемых одновременно процессов. Приведенные ре-
зультаты получены при обработке трехмерного массива данных размером
64× 64× 57:

Таблица 1 – Время выполнения тестового задания в зависимости от количества исполь-
зуемых процессов

Кол-во
запущенных
процессов

Время
выполнения
теста, сек

Ускорение Эффективность

1 11.269 1.000 1.000
2 8.124 1.387 0.693
3 6.434 1.751 0.584
4 5.605 2.010 0.502
6 4.438 2.539 0.423

Можно сделать вывод, что удается обеспечить существенное ускорение

11

выполнения обработки данных. Максимальное полученное ускорение соста-
вило немного более 2.5 при использовании 6 процессов на 6-ядерном процес-
соре.

Результаты обработки по определению распределения максимальных и
средних значений приведены на рисунках:

Рисунок 1 – Максимальные значения функции распределения fmax(p1, p2)

Рисунок 2 – Средние значения функции распределения favg(p1, p2)

12

ЗАКЛЮЧЕНИЕ

Поставленные в качестве цели выпускной квалификационной работы
задачи были полностью выполнены. Проведен обзор актуального направле-
ния обработки больших массивов данных. Определена специфика и отличи-
тельные признаки проблематики BigData. При решении задач такого класса
использование аппаратного параллелизма становится обязательным услови-
ем. Представлен обзор программных технологий для использования аппарат-
ного параллелизма на различных уровнях. От многоядерных мультипроцес-
соров и до распределенных кластерных систем. В том числе OpenMP, MPI и
Hadoop.

В качестве предмета детального изучения и демонстратора возможно-
стей был выбран язык Python, поскольку в настоящее время он является
стандартным инструментом обработки и анализа данных, как в научных про-
ектах, так и в различных прикладных областях, включая бизнес-аналитику.
Представлено описание особенностей этого языка и ряда специализирован-
ных библиотек, таких, как NumPy, SciPy, Pandas, StatsModels, Matplotlib.

Демонстрация полученных знаний и навыков работы с экосистемой
Python выполнена на примере обработки научных данных – результатов чис-
ленного моделирования поведения двумерного материала графена во внеш-
нем электрическом поле. Был сформулирован ряд требования по обработ-
ке этих данных, предоставлявшихся в виде большого многомерного массива.
Разработано и продемонстрировано программное решение, обеспечивающее
предварительный парсинг данных и их обработку в параллельном режиме с
использованием технологии генерации нескольких процессов. Полученные ре-
зультаты представлены в работе. Разработанное программное решение будет
использоваться для анализа новых данных, получаемых в вычислительных
экспериментах.

13

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1 Unstructured Data: an overview of the Data of Big Data / Adanma Cecilia
Eberendu // International Journal of Computer Trends and Technology. 2016.
V.38, №1, P. 46-50.

2 (Big)Data in a virtualized world: volume, velocity, and variety in cloud
Datacenters in Cloud Datacenters / Robert Birke, Mathias Bjorkqvist, Lydia
Y. Chen, Evgenia Smirni, and Ton Engbersen // Proceedings of the 12th
USENIX conference on File and Storage Technologies, FAST 2014, Canta
Clara, CA, USA, Fabruary 17-20,2014, P. 177-189.

3 Big Data Multimedia Mining: Feature Extraction Facing Volume, Velocity,
and Variety / Vedhas Pandit, Shahin Amiriparian, Maximilian Schmitt,
Amr Mousa, Bjorn Schuller // In book: Big Data Analytics for Large Scale
Multimedia Search - John Wiley & Sons Ltd, 2019, P 61-87.

4 Революция Big Data: Как извлечь необходимую информа-
цию из «Больших Данных»: [Электронный ресурс] URL:
http://statsoft.ru/products/Enterprise/Big-Data.php (дата обращения:
20.01.2022)

5 A Taxonomy and Survey on Distributed File Systems, Fourth
International Conference on Networked Computing and Advanced
Information Management / Tran Doan Thanh, Subaji Mohan, Eunmi
Choi, SangBum Kim, Pilsung Kim: [Электронный ресурс] URL:
https://ieeexplore.ieee.org/document/4623994 (дата обращения: 20.01.2022)

6 Performance modeling of a distributed file-system / Sandeep Kumar //
arXiv:1908.10036

7 HDFS Architecture Guide: [Электронный ресурс] URL:
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html (дата обращения:
20.01.2022)

8 A comparative study of parallel programming languages: the Salishan
problems. / Feo J.T. – Elsevier, 2016. 396 p.

9 Document for a standard message-passing interface / Dongarra J. // Message
Passing Interface Forum. – 1993.

14

10 Fortran DVM-язык разработки мобильных параллельных программ /
Н.А.Коновалов, В.А.Крюков, П.Н.Михайлов, и др. // Программирова-
ние. 1995. №1. с. 49-54.

11 Python data science handbook: Essential tools for working with data /
VanderPlas J. // – O’Reilly Media, Inc. 2017. 546 p.

15

	ВВЕДЕНИЕ
	Большие данные – определения и организация хранения
	Использование параллелизма при обработке данных
	Python – высокоуровневый язык для работы с данными
	Постановка задачи анализа данных
	Программная реализация процедур анализа и результаты
	ЗАКЛЮЧЕНИЕ
	СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

