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ВВЕДЕНИЕ

Актуальность темы магистерской работы.

Хорошо известно, что теория преобразования Фурье занимает особое

место не только в комплексном и функциональном анализе, но и их много-

численных приложениях в прикладной математике, а также в теоретической

и математической физике.

Поэтому, можно сказать, что тематика магистерской работы является

весьма актуальной.

Целью магистерской работы являлось получение аналога теоремы

Хилле-Тамаркина в случае 𝐿𝑝
𝜔 весовых пространств.

Краткая характеристика и содержание работы.

Магистерская работа состоит из введения, 3-х разделов, заключения,

списка использованных источников, состоящего из 20 наименований, и 2-х

приложений.

Первый раздел имеет 4 основных параграфа и носит вспомогательный

характер. В нём изложены основные определения и теоремы из теории пре-

образования Фурье.

Основное исследование изложено во втором разделе данной работы. Он

состоит из 3-х параграфов. Собственное исследование предоставлено в 3 па-

раграфе. В нём доказана основная теорема работы.

В третьем разделе описаны возможности практического применения

преобразования Фурье для передачи сигналов. Он состоит из 2-х парагра-

фов. В 1 параграфе описаны возможности применения преобразования Фурье

для удаления шумов из аудиосигнала. Во 2 параграфе описаны возможности

применения преобразования Фурье для нахождения границ на изображении.

В приложениях предоставлены программные коды, реализующие идеи

из третьего раздела.

Общий объём работы составляет 53 страницы, включая приложения.

Методы исследования.

В работе применяются общие методы комплексного и гармонического

анализа.

Апробация.

По результатам исследования был сделан доклад на семинаре кафедры.
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ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении вводятся следующие обозначения необходимые для из-

ложения результатов.

Пусть C+ = {𝑧 = 𝑥 + 𝑖𝑦, 𝑦 > 0} - верхняя полуплоскость, 𝐻(C+) -

множество всех аналитических функций в C+, ℎ(C+) - множество всех гар-

монических функций в C+.

Обозначим через 𝑁(C+) - класс P. Неванлинны в полуплоскости C+,

т.е. 𝑓 ∈ 𝑁(C+) ⇔ 𝑓(𝑧) = Ψ(𝑧)
𝑆(𝑧) , 𝑧 ∈ C+, Ψ, 𝑆 ∈ 𝐻∞(C+), 𝑆(𝑧) ̸= 0, где

𝐻∞(C+) = 𝐻(C+) ∩ 𝐿∞(C+) - класс ограниченных аналитических функций

в C+, или ⇔ существует 𝑈 ∈ ℎ(C+), 𝑈(𝑧) > 0, 𝑧 ∈ C+, ln |𝑓(𝑧)| 6 𝑈(𝑧).

𝐿𝑝 пространством для 1 6 𝑝 < ∞ называется множество измеримых

функций, таких, что их 𝑝-я степень интегрируема, т.е.∫︁
𝑅

|𝑓(𝑥)|𝑝𝑑𝑥 < ∞,

и вводится норма

||𝑓 ||𝑝 =

⎛⎝∫︁
𝑅

|𝑓(𝑥)|𝑝𝑑𝑥

⎞⎠ 1
𝑝

.

Классом Харди в верхней полуплоскости C+ называется следующий

класс функций:

𝐻𝑝(C+) = 𝐻𝑝 = {𝑓 ∈ 𝐻(C+) : sup
𝑦>0

+∞∫︁
−∞

|𝑓(𝑥 + 𝑖𝑦)|𝑝𝑑𝑥 < +∞}, 0 < 𝑝 6 +∞.

Раздел 1. Предварительные сведения из теории преобразова-

ния Фурье.

S 1.1. Преобразование Фурье суммируемых функций.
Пусть функция 𝑓(𝑥) с периодом 2𝜋𝑙 представима своим рядом Фурье

𝑓(𝑥) =
+∞∑︁

𝑘=−∞

𝑎𝑘𝑒
𝑖𝑘𝑥𝑙 ,
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где

𝑎𝑘 =
1

2𝜋𝑙

𝜋𝑙∫︁
−𝜋𝑙

𝑓(𝑡)𝑒−𝑖𝑘𝑡𝑙 𝑑𝑡 (𝑘 = 0,±1,±2, . . .). (1)

Обозначим

𝑓(𝑢) =
1√
2𝜋

+∞∫︁
−∞

𝑓(𝑡)𝑒−𝑖𝑡𝑢𝑑𝑡, (2)

и

𝑓(𝑥) =
1√
2𝜋

+∞∫︁
−∞

𝑓(𝑢)𝑒𝑖𝑥𝑢𝑑𝑢. (3)

Функция 𝑓(𝑢), определённая интегралом (2), называется преобразова-

ние Фурье функции 𝑓(𝑥). Двойственная с (2) формула (3) называется обра-

щением преобразования Фурье или обратным преобразованием Фурье.

Простейшим классом функций, для которого вводится преобразование

Фурье, является 𝐿1(R) = 𝐿1. Для любой функции 𝑓(𝑥) ∈ 𝐿1 её преобразова-

ние Фурье

𝐹𝑓(𝑢) =
1√
2𝜋

+∞∫︁
−∞

𝑓(𝑡)𝑒−𝑖𝑡𝑢𝑑𝑡

существует для всех вещественных значений u.

S 1.2. Преобразование Фурье в 𝐿2, теорема Планшереля.

Для произвольной функции 𝑓(𝑥) ∈ 𝐿2(R) интеграл Фурье ℱ [𝑓 ] в смыс-

ле Лебега, вообще говоря, не существует.

Планшерель впервые построил оператор Фурье ℱ [𝑓 ] для класса 𝐿2, до-

казав следующую замечательную теорему, устанавливающую при этом пол-

ное равноправие между функцией и её преобразованием Фурье.

Теорема Планшереля. Пусть 𝑓(𝑥) - произвольная функция из класса

𝐿2(R).

Тогда:

4



1. Формула

𝐹 (𝑢) =
1√
2𝜋

𝑑

𝑑𝑢

+∞∫︁
−∞

𝑓(𝑡)
𝑒−𝑖𝑢𝑡 − 1

−𝑖𝑡
𝑑𝑡 (4)

почти всюду на всей оси R определяет функцию

𝐹 (𝑢) ≡ ℱ [𝑓 ] ∈ 𝐿2(R). Двойственная формула

𝑓(𝑥) =
1√
2𝜋

𝑑

𝑑𝑥

+∞∫︁
−∞

𝐹 (𝑢)
𝑒𝑖𝑥𝑢 − 1

𝑖𝑢
𝑑𝑢 (5)

также справедлива почти всюду.

Кроме того, для пары функций 𝑓(𝑥) и 𝐹 (𝑢) = ℱ [𝑓 ] имеет место равен-

ство Парсеваля

+∞∫︁
−∞

|𝐹 (𝑢)|2𝑑𝑢 =

+∞∫︁
−∞

|𝑓(𝑥)|2𝑑𝑥. (6)

2. Преобразование Фурье 𝐹 (𝑢) = ℱ [𝑓 ] и его обращение 𝑓(𝑥) = ℱ−1[𝐹 ], за-

даваемые соответственно формулами (4) и (5), могут быть определены

также предельными соотношениями

𝐹 (𝑢) = lim
𝜎→+∞

1√
2𝜋

𝜎∫︁
−𝜎

𝑓(𝑡)𝑒−𝑖𝑢𝑡𝑑𝑡, (7)

𝑓(𝑥) = lim
𝜎→+∞

1√
2𝜋

𝜎∫︁
−𝜎

𝐹 (𝑢)𝑒𝑖𝑥𝑢𝑑𝑢. (8)

3. Если 𝑔(𝑥) - произвольная функция из класса 𝐿2(R) и

𝐺(𝑢) =
1√
2𝜋

𝑑

𝑑𝑢

+∞∫︁
−∞

𝑔(𝑡)
𝑒−𝑖𝑢𝑡 − 1

−𝑖𝑡
𝑑𝑡, (9)

то для пары функций 𝑓(𝑥) и 𝑔(𝑥) и их преобразований 𝐹 (𝑢) и 𝐺(𝑢)

имеет место обобщённое равенство Парсеваля
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+∞∫︁
−∞

𝐹 (𝑢)𝐺(𝑢)𝑑𝑢 =

+∞∫︁
−∞

𝑓(𝑥)𝑔(𝑥)𝑑𝑥. (10)

Теорема Хаусдорфа-Юнга. Пусть 1 < 𝑝 6 2, 1/𝑝 + 1/𝑞 = 1. Тогда

если 𝑓 ∈ 𝐿𝑝(R), то 𝑓 ∈ 𝐿𝑞(R) и ||𝑓 ||𝑞 6 𝐶𝑝||𝑓 ||𝑝.

S 1.3. Классы Харди в верхней полуплоскости.

Определение 1.3.1. Говорят, что функция 𝐹 , аналитическая в C+,

принадлежит пространству 𝐻𝑝(C+) (или просто 𝐻𝑝, когда известно что речь

идет о верхней полуплоскости), если существует константа 𝐶, 𝐶 < ∞, такая

что

∞∫︁
−∞

|𝐹 (𝑥 + 𝑖𝑦)|𝑝𝑑𝑥 6 𝐶

при всех 𝑦 > 0.

Теорема 1.3.9. Пусть 𝐹 ∈ 𝐻𝑝(C+). Тогда при 𝑧 ∈ C+

𝐹 (𝑧) = 𝑒𝑖𝛾𝐼𝐹 (𝑧) ·𝑄𝐹 (𝑧);

здесь:

1. 𝛾 - вещественное число;

2. 𝐼𝐹 - внутренний множитель функции 𝐹 , равный

𝐼𝐹 (𝑧) = 𝐵(𝑧) exp

⎛⎝1

𝜋

∞∫︁
−∞

(︂
𝑖

𝑧 − 𝑡
+

𝑖𝑡

𝑡2 + 1

)︂
𝑑𝜎(𝑡)

⎞⎠ 𝑒𝑖𝛼𝑧;

в этой формуле

𝑎) 𝐵 - произведение Бляшке в C+,

𝐵(𝑧) =
∏︁
𝑘

(︂
𝑒𝑖𝛼𝑘 · 𝑧 − 𝑧𝑘

𝑧 − 𝑧𝑘

)︂
,

где 𝑧𝑘 - нули функции 𝐹 в C+, а вещественные числа 𝛼𝑘 выбраны

так, чтобы
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𝑒𝑖𝛼𝑘 · 𝑧 − 𝑧𝑘
𝑧 − 𝑧𝑘

> 0;

𝑏) 𝜎 6 0 - некоторая сингулярная мера на R, для которой

∞∫︁
−∞

|𝑑𝜎(𝑡)|
1 + 𝑡2

< ∞;

𝑐) 𝛼 > 0 («масса в точке ∞» равна −𝛼);

3. 𝑄𝐹 - внешний множитель функции 𝐹 , равный

𝑄𝐹 (𝑧) = exp

⎛⎝ 𝑖

𝜋

∞∫︁
−∞

(︂
1

𝑧 − 𝑡
+

𝑡

𝑡2 + 1

)︂
log |𝐹 (𝑡)|𝑑𝑡

⎞⎠ .

S 1.4. Класс Харди 𝐻2 в верхней полуплоскости и теорема

Пэли-Винера.

Теорема Пэли-Винера. Комплексозначная функция 𝑓(𝑧) принадле-

жит классу 𝐻2 тогда и только тогда, когда она имеет вид

𝑓(𝑧) =
1√
2𝜋

+∞∫︁
0

𝑓(𝑡)𝑒𝑖𝑡𝑧𝑑𝑡,

для некоторых 𝑓 ∈ 𝐿2, где 𝑧 = 𝑥 + 𝑖𝑦, 𝑧 ∈ C+. Это представление

единственно.

Имеется аналог теоремы Пэли-Винера и для 1 6 𝑝 6 2.

А именно справедливо следующее: Пусть 𝑓 ∈ 𝐻𝑝(1 6 𝑝 6 2), тогда

𝑓 ∈ 𝐿𝑞 (здесь и везде далее 1 6 𝑞 < +∞), где 1/𝑝 + 1/𝑞 = 1, при этом

𝑓(𝑥) = 0, если 𝑥 ∈ R_, и справедлива следующая оценка

||𝑓 ||𝐿𝑞 6 𝐶𝑝||𝑓 ||𝐻𝑝.

Пространство 𝐻2(C+) совпадает с классом функций, представимых в

виде
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𝑓(𝑧) =

∫︁
R+

𝑓(𝑡)𝑒𝑖𝑡𝑧𝑑𝑡, 𝑧 ∈ C+, (11)

где 𝑓 ∈ 𝐿𝑝(R+), R+ = {𝑥 : 𝑥 > 0}.
Из теоремы Хаусдорфа-Юнга вытекает следующее: Если 𝑓 ∈ 𝐿𝑝(R+),

1 6 𝑝 6 2, то функция (11) принадлежит 𝐻𝑞(C+), где 1/𝑝 + 1/𝑞 = 1, и

справедлива следующая оценка

||𝑓 ||𝑞 6 𝐶𝑝||𝑓 ||𝑝.

Раздел 2. Преобразование Фурье в 𝐿𝑝 и классы Харди 𝐻𝑝 в

верхней полуплоскости.

Хорошо известно, если 𝑓 ∈ 𝐿𝑝 при 𝑝 > 2, то как доказал Титчмарш,

lim
𝑅→+∞

𝑓𝑅 может не существовать ни в каком 𝐿𝑞, 𝑞 > 1.

S 2.1. Теорема Хилле-Тамаркина и класс Харди.
Поэтому Хилле и Тамаркин ввели понятие 𝑞 - преобразования Фурье.

Определение 2.1.1. Пусть 𝑓 ∈ 𝐿𝑝, 1 6 𝑝 < +∞, тогда

𝑓𝑅(𝑥) =
1√
2𝜋

𝑅∫︁
−𝑅

𝑓(𝑡)𝑒−𝑖𝑡𝑥𝑑𝑡.

Скажем, что 𝑓𝑞 является 𝑞 - преобразованием Фурье функции 𝑓 ∈ 𝐿𝑝,

если 𝑓𝑅(𝑥) сходится в 𝐿𝑞, 1 6 𝑞 6 ∞, к функции 𝑓𝑞(𝑥), при 𝑅 → ∞, т.е.

lim
𝑅→+∞

∞∫︁
−∞

|𝑓𝑞(𝑥) − 𝑓𝑅(𝑥)|𝑞𝑑𝑥 = 0,

и 𝑓𝑞(𝑥) называется 𝑞 - преобразованием Фурье в 𝐿𝑞 для функции 𝑓(𝑥).

И одновременно доказали следующую теорему:

Теорема Хилле-Тамаркина. Если 𝑓 ∈ 𝐻𝑝(C+) и существует 𝑞 - пре-

образование Фурье для функции 𝑓 , то оно равно нулю почти всюду при 𝑥 < 0.

S 2.2. Класс Неванлинны.
Хорошо известно следующее утверждение:
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Теорема 2.2.1. Если 𝑓 ∈ 𝐻1(C+), то 𝑓(𝑥) = 0, 𝑥 ∈ 𝑅_ = {𝑥 : 𝑥 < 0}.
Таким образом справедливо следующее утверждение:

Если 𝑓 ∈ 𝐻(C+), при этом выполняется оценка

|𝑓(𝑥 + 𝑖𝑦)|𝑝 6 𝑈(𝑥, 𝑦), 𝑥 + 𝑖𝑦 ∈ C+, (12)

где 𝑈 - неотрицательная гармоническая функция в C+, для некоторого

𝑝, 0 < 𝑝 < +∞, и 𝑓(𝑥) = lim
𝑦→0

𝑓(𝑥 + 𝑖𝑦), 𝑥 ∈ R, принадлежит 𝐿1(R), то по

теореме В.И. Смирнова 𝑓 ∈ 𝐻1(C+), поэтому по теореме 2.2.1: 𝑓(𝑥) = 0,

𝑥 ∈ R_, где R_ = {𝑥 : 𝑥 < 0}.
Естественно возникает вопрос верно ли аналогичное утверждение если

в неравенстве (12), вместо |𝑓(𝑧)|𝑝 - положить ln+ |𝑓(𝑧)|, 𝑧 ∈ C+?

Можно построить пример функции 𝑓 ∈ 𝑁(C+), 𝑓(𝑥) ∈ 𝐿1(R), в тоже

время 𝑓(𝑥) ̸= 0, 𝑥 ∈ R_, 𝑓(𝑥) = 0, 𝑥 ∈ R+ = {𝑥 : 𝑥 > 0}.
Тем не менее справедливо следующее утверждение:

Пусть 𝜆(𝑥) - монотонно растущая, непрерывная, положительная функ-

ция на R+, причём

lim
𝑥→+∞

𝑥𝑛

𝜆(𝑥)
= 0, 𝑛 = 1, 2, ...

такая функция называется быстро растущим весом.

Введём:

𝑚𝑛 = sup
𝑥∈𝑅+

𝑥𝑛

𝜆(𝑥)
, 𝑇 (𝑟) = sup

𝑛≥1

𝑟𝑛

𝑚𝑛
, 𝑟 ≥ 0.

Теорема 2.2.2. Пусть 𝜆(𝑥) - быстро растущий вес на R+, 𝑓 ∈ 𝑁(C+),

граничные значения на 𝑅 принадлежат 𝐿1(R), т.е 𝑓(𝑥) ∈ 𝐿1(R), причём

+∞∫︁
1

ln𝑇 (𝑟)

𝑟3/2
𝑑𝑟 = +∞, (13)

и

|𝑓(𝑥)| ≤ 1

𝜆(−𝑥)
, 𝑥 ∈ R_. (14)
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Тогда если

lim
𝑦→+∞

ln |𝑓(𝑖𝑦)|
𝑦

≤ 0, (15)

то 𝑓(𝑥) = 0, ∀𝑥 ∈ R_, при этом 𝑓 ∈ 𝐻1(C+).

Обратно, если интеграл (13) сходится, или не выполняется условие (14),

то можно построить функцию 𝑓 ∈ 𝑁(C+), 𝑓(𝑥) ∈ 𝐿1(R), такую, что 𝑓(𝑥) ̸= 0,

𝑥 ∈ R_.

S 2.3. Аналог теоремы Хилле-Тамаркина.

Определение 2.3.1 Пусть 𝜔 - непрерывная положительная функция

на действительной оси 𝑅, причём 𝜔 невозрастающая функция. Такую функ-

цию назовём весовой.

Определение 2.3.2 Весовым пространством Лебега 𝐿𝑝
𝜔, где 1 6 𝑝 < ∞

и 𝜔 - весовая функция, назовем множество таких измеримых функций, для

которых

||𝑓 ||𝑝,𝜔 =

⎛⎝∫︁
𝑅

|𝑓(𝑥)|𝑝𝜔(𝑥)𝑑𝑥

⎞⎠1/𝑝

< ∞.

Теорема 2.3.3. Пусть 𝑓 ∈ 𝐻𝑝(C+), причём 1 6 𝑝 < ∞, и выполняется

оценка

|𝑓(𝑧)| 6 𝑒

|𝑧|
𝛼
𝑝

, |𝑧| > 1, 𝛼 > 𝑝, (16)

при некотором положительном 𝑐, и предположим, что

𝑓𝑅(𝑥) =

𝑅∫︁
−𝑅

𝑓(𝑡)𝑒−𝑖𝑡𝑥𝑑𝑡, 𝑅 > 0,

в весовом 𝐿𝑞
𝜔 пространстве сходится к некоторой функции 𝑓𝑞(𝑥), тогда

𝑓𝑞(𝑥) = 0 почти всюду, для всех 𝑥 < 0.

Раздел 3. Практическое применение преобразования Фурье.

S 3.1. Удаление шумов из звука.
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Преобразование Фурье полезно во многих приложениях. В распознава-

нии речи преобразование Фурье и связанные с ним преобразования служат

для восстановления произнесённых слов.

Задача преобразования Фурье возникает всякий раз, когда нужно как-

либо работать с сигналом, представляемым в пространстве частот.

Чтобы лучше понять преобразование Фурье и то, как его можно приме-

нить, была решена задача фильтрации звука. Намеренно был создан звуковой

сигнал с высокочастотным шумом, а затем этот шум был удалён с помощью

преобразования Фурье.

S 3.2. Нахождение границ на изображении.
Интуитивно понятно, что для синусоидального сигнала, если амплитуда

меняется быстро за короткое время, можно сказать, что это высокочастот-

ный сигнал. Если он изменяется медленно, это низкочастотный сигнал. Мы

можем распространить ту же идею на изображения. Где амплитуда сильно

различается на изображениях? На краевых точках или шумах.

Изображение это тоже своего рода функция, только от двух переменных

𝑥 и 𝑦. И мы знаем значение функции 𝑓(𝑥, 𝑦) в каждом пикселе (𝑥, 𝑦).

С использованием преобразования Фурье мы можем замечать в изобра-

жении закономерности, которые есть в исходном изображении, то есть можем

представить изображение в удобной для анализа форме.

Мы можем просто удалять низкие частоты, и с помощью этого находить

границы на изображении.

В приложениях предоставлены программные коды, реализующие идеи

из раздела 3.

В Заключении описаны результаты проделанной работы.

В ходе магистерской работы было проделано следующее:

— определены основные понятия, связанные с теорией преобразования

Фурье;

— получен аналог теоремы Хилле-Тамаркина в случае 𝐿𝑝
𝜔 весовых про-

странств.

— написан программный код, позволяющий удалить шумы из звука с по-

мощью преобразования Фурье.
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— написан программный код, позволяющий находить границы на изобра-

жении с помощью преобразования Фурье.
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