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ВВЕДЕНИЕ

Данная выпускная квалификационная работа посвящена нахождению
множества достижимости решений уравнения Левнера-Куфарева для еди-
ничного круга.

Теория оптимального управления охватывает широкий круг задач, в ко-
торых при определенных ограничениях требуется минимизировать (макси-
мизировать) заданный критерий качества.

В задачах оптимального управления важнейшую роль играет множество
достижимости. Оно характеризует все возможнные положения управляемой
системы в каждый момент времени.

Актуальность темы исследования. Задачи оптимального управления
встречаются в различных облостях науки, техники, медицины, экономики,
к примеру задачи ядерной энергетики (управление охлаждением реактора),
работотехники (движение роборот, управление всевозможными станками и
автоматами), механики полета (самонаводящиеся ракеты, автопилоты, авто-
матическая стыковка на орбите, управление самолетом) и т. д..

Цели и задачи исследования. Задача - найти границу множества, ко-
торое может быть заполнено решениями уравнений Левнера-Куфарева (оп-
тимальное управление). Это одна из задач теории оптимального управления.

Содержание работы. В 1 главе данной работы рассматриваются ва-
рианционные и параметрические методы в экстремальных задачах для од-
нолистных функций. Во 2 главе рассматриваются множества значений для
систем функционалов. В 3 главе оценки коэффициентов для ограниченных
однолистных функций. И в 4 главе проведена практическая работа в кото-
рой было необходимо получить область достижимости уравнения Левнера-
Куфарева.

Методы исследования. Для выполнения поставленной задачи исполь-
зуются методы теории оптимального управления, в частности принцип мак-
симума Понтрягина.

Апробация работы. На научном семинаре 23.05.2022 кафедры матема-
тического анализа сделан доклад по материалам выпускной квалификацион-
ной работы.
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1 Основное содержание работы

Вариационный метод решения экстремальных задач в комплексном ана-
лизе хорошо известен, четко описан в книгах и статьях и высоко оценен
во многих обзорах. Не будем повторять детали его применения. Только на-
помним, что, поскольку многие рассматриваемые классы функций компакт-
ны, существование экстремальных функций для непрерывных функционалов
тривиально гарантировано, и это позволяет быть свободными от трудностей,
характерных для вариационного исчисления.

С другой стороны, нелинейное условие однолистности создает много
сложностей при выводе вариационных формул для богатого подмножества
функций из окрестности экстремальной функции. Глубокие вариационные
принципы граничных и внутренних вариаций Шиффера, вариационный ме-
тод Голузина и вариации порождающих мер в представлении Левнера-
Куфарева приводят к близким дифференциальным уравнениям для экстре-
мальной функции. Эти обыкновенные дифференциальные уравнения играют
роль, аналогичную уравнениям Эйлера в вариационных задачах.

Несколько сложнее найти аналоги неравенствам Вейерштрасса, хотя их
можно обнаружить в свойствах граничных континуумов экстремальных об-
ластей, являющихся траекториями квадратичных дифференциалов.

Вариационный метод является важным инструментом в решении или ис-
следовании экстремальных задач. В дополнение к хорошим примерам его эф-
фективных приложений, также обеспечил основу для современных методов
экстремальных длин, квадратичных дифференциалов и теории пространств
Тейхмюллера.

Но решающую роль в историческом доказательстве гипотезы Бибербаха
суждено было сыграть параметрическому методу представления конформ-
ных отображений диска (круга). Теперь узнаем больше подробностей об этом.

Конформные отображения для круга с разрезом образуют плотный под-
класс всех конформных отображений единичного диска (круга). Эта простая
идея Каратеодори была реализована в параметрическом методе благодаря
мастерству Левнера в описании кусочно - гладкой деформации w(z, t), 0 ≤
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t <∞, между тождеством w = z и заданным отображение w = f(z) с помо-
щью обыкновенного дифференциального уравнения

dw

dt
= −we

iu + w

eiu − w
,w(z, 0) = z, (1.1)

0 < |z| < 1, 0 ≤ t <∞, lim
t→∞

etw(z, t) = f(z).

Функция u = u(t) здесь кусочно непрерывна на [0,∞). Каждое решение
w(z, t), а, следовательно, и предельная функция f(z), одномерна в E. Мно-
жество всех функций etw(z, t), t ≥ 0, плотен в S.

Дифференциальное уравнение Левнера (1.1) параметрически описывает
не только класс S, но и его подклассы

SM = {f : f ∈ S, |f(z)| < M, |z| < 1} ,M > 1,

из ограниченных функций от S. Для этого достаточно интегрировать
пример (1.1) на замкнутом интервале [0, logM ]. Множество всех функций
Mw(z, logM) является плотным в SM .

Нетривиальное обобщение уравнения Левнера означает переход к выпук-
лой комбинации ядер Шварца, т. е. к замене дифференциального уравнения
(1.1) обобщенным дифференциальным уравнением Левнера

dw

dt
= −w

m∑
k=1

λk
eiuk + w

eiuk − w
, (1.2)

с теми же дополнительными условиями, что и в (1.1).
Векторнозначная функция u = (u1(t), ..., um(t)) здесь кусочно непрерывна

на [0,∞) и λ = (λ1, ..., λm) - кусочно-непрерывная векторнозначная функция
с отрицательными координатами,

∑m
k=1 λk = 1. Как и прежде, решения для

уравнения (1.2), это параметризовать подкласс классов S или SM .
Обобщение (1.2) служит промежуточным шагом от уравнения (1.1) к раз-

нице Левнера-Куфарева, а именно, целое уравнение

dw

dt
= −wp(w, t) (1.3)
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с теми же дополнительными условиями, что и в (1.1), и с функцией p, p(0, t) =

1, которая аналитична в E относительно первой переменной и измерима на
[0,∞) по отношению ко второй переменной и имеет положительную действи-
тельную часть. Решения для уравнения (1.3) - параметризовать весь класс
S.

Обобщенное дифференциальное уравнение (1.2) является промежуточ-
ным, оно представляется, как важное значение для применения методов оп-
тимизации при решении экстремальных задач.

Вывод и описание дифференциального уравнения Левнера (1.1), его обоб-
щения (1.2), уравнения Левнера-Куфарева (1.3), а также их связей и отно-
шений между множествами решений можно найти в (??, 2.2).

В течение длительного времени параметрический метод конкурировал с
вариационным для оценки функций в классах однолистных функций. Его
действие основано на следующем подходе. Пусть w(z, t) - решение краевой за-
дачи для дифференциального уравнения ((1.1) (1.2) или (1.3)): ft = f(z, t) =

etw(z, t), limt→∞ f(z, t) = f(z). Параметризуем значения L(f) функционала
L в функции f с помощью семейства L(ft) и напишим для него дифферен-
циальное уравнение, вытекающее из (1.1) и имеющее правую часть со зна-
чением в замкнутом интервале [m(z, t),M(z, t)]. Подставим это уравнение в
дифференциальное неравенство

m(z, t) ≤ dL(ft)

dt
≤M(z, t), l(ft)|t=0 = L(z),

интегрируем его на [0,∞), и получим оценки для L(f). Оценка оказыва-
ется точной, если существует семейство f(t) такое, что правая часть инте-
грального дифференциального уравнения для f(t) совпадает с M(z, t) или
m(z, t) для всех t ≥ 0.

Такой подход позволяет решать даже изопериметрические экстремаль-
ные задачи, в частности популярные в последние десятилетия задачи оценки
функционалов в классах однолистных функций с фиксированными началь-
ными коэффициентами. Само собой разумеется, что если функция f име-
ет фиксированный коэффициент, то его производящая функция p(w, t) из
правой части уравнения Левнера-Куфарева (1.3) может иметь произволь-
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ный коэффициент p1(t) =
∂p(w, t)

∂w
|w=0 удовлетворяя единственному условию

−
∫∞
0 p1(t)dt = a2.

Однако в некоторых подклассах однолистных функций, полученных яв-
ным интегрированием, в частности, случаи уравнения Левнера-Куфарева
(1.3), соотношение между коэффициентами a2 и p1(t) является еще строже.
Таким образом, для действительного α пусть

p(z) = α(1 +
zf

′′
(z)

f ′(z)
) + (1− α)

zf
′
(z)

f(z)
;

определим функцию f , голоморфную в E и нормализованную разложением
(??), f ′

(z)f(z)/z 6= 0, которая называется α-выпуклой или функцией Мокану,
если Rep(z) > 0, z ∈ E.

Класс функций Мокану может быть получен для α > 0 интегрированием,
в частности, уравнением Левнера-Куфарева (1.3) с правой стороной

p(w, t) = (e−t/α + (1− e−t/α)p(w))−1, Rep(w) > 0.

Фиксация начальных коэффициентов a2, ..., an функция f эквивалентна
соответствующей фиксации коэффициентов p1, ..., pn−1 в разложении p(w).

Индукцией было доказано, что при некоторых дополнительных ограни-
чениях для заданного w и фиксированного множества значений семейства
функционалов p(w, t), t ≥ 0, в этом классе содержится полоса m(w, t) ≤
−Rep(w, t) ≤ M(w, t). Более того, существует семейство p(w, t) такое, что
p(w, t) совпадает с m(w, t) или M(w, t) для всех t ≥ 0. Интегрирование диф-
ференциального неравенства

m(w, t) ≤ d log |w(z, t)|
dt

≤M(w, t),

приходим к точной оценке |f(z)| сверху или снизу в классе функций Мо-
кану с фиксированными коэффициентами a2, ..., an.

Формулируем следствие этого общего результата для n = 2.

Теорема 1.1. Пусть функция f , нормированная разложением (??), α-
выпуклая, α > 0. Подставили
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ε = −((1 + α) |a2| − i(4− (1 + α))2 |a2|2)1/2)/2,

λ = (1 + α) |a2| /2 + 1.

Тогда для всех z справедливо следующее точное неравенство:

 1

α

∫ |z|
0

(
t

(1− εt)(1− ε̄t)

) 1

α dt

t


α

≤ |f(z)| ≤

 1

α

∫ |z|
0

(
t

(1− t)λ(1 + t)2−λ

) 1

α dt

t


α

.
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2 Практическая часть

В задачах оптимального уравнения важную роль играет множество дости-
жимости. Множество достижимости показывает все возможные положения
управляемой системы в каждый момент времени.

Дано уравнение Левнера-Куфарева:

dw

dt
=
−weiu

eiu − w
(2.1)

где
w = x1 + ix2,

eiu = cosu+ isinu

подставляем в уравнение и получаем:

dw

dt
=
−((x1 + ix2)(cosu+ isinu))

cosu+ isinu− (x1 + ix2)
=

=
−((x1 + ix2)(cosu+ isinu))

cosu+ isinu− x1 − ix2
∗ cosu− x1 − isinu+ ix2
cosu− x1 − isinu+ ix2

отделим вещественную и мнимую части уравнения:
вещественная часть:

−x1 + cosu(x21 + x22)

(1 + x21 + x22 − 2(cosux1 + sinux2))
(2.2)

мнимая часть:

−x2 + sinu(x21 + x22)

(1 + x21 + x22 − 2(cosux1 + sinux2))
(2.3)

тем самым получаем систему дифференциальных уравнений:dx1
dt = −x1+cosu(x21+x22)

(1+x21+x
2
2−2(cosux1+sinux2))

dx2
dt = −x2+sinu(x21+x22)

(1+x21+x
2
2−2(cosux1+sinux2))

с начальными условиями x1(0) = r, x2(0) = 0

Далее построим функцию Гамильтона, она будет иметь следующий вид:
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H = − ψ1(−x1 + cosu(x21 + x22))

1 + x21 + x22 − 2(cosux1 + sinux2)
+

+
ψ2(−x2 + sinu(x21 + x22))

1 + x21 + x22 − 2(cosux1 + sinux2)
dψ1

dt = − dH
dx1

dψ2

dt = − dH
dx2

(2.4)

−dH
dx1

=

−(−ψ1 + 2(ψ1x1 − ψ2x2)Cos[u] + (−ψ1x
2
1 + 2ψ2x1x2 + ψ1x

2
2)Cos[2u]+

+2(ψ2x1 + ψ1x2)Sin[u] + (−ψ2x
2
1 − 2ψ1x1x2 + ψ2x

2
2)Sin[2u])

- числитель

(2(1 + x21 + x22 − 2x1Cos[u]− 2x2Sin[u])2)

- знаменатель

−dH
dx2

=

−(−ψ2 + (−ψ2x
2
1 − 2ψ1x1x2 + ψ2x

2
2)Cos[2u]− 2ψ1x1Sin[u]+

+2ψ2x2Sin[u]+2Cos[u](ψ2x1+ψ1x2+(−2ψ2x1x2+ψ1(x1−x2)(x1+x2))Sin[u]))

- числитель

(2(1 + x21 + x22 − 2x1Cos[u]− 2x2Sin[u])2)

- знаменатель

dH

du
=

9



(−2(ψ2x1−ψ1x2)(x
2
1 + x22) + (−2ψ1x1x2 +ψ2(x

2
1 + x41− x22 + 2x21x

2
2 + x42))cosu+

+(2ψ2x1x2 − ψ1(x
4
1 + x22 + x42 + x21(−1 + 2x22)))sinu)

- числитель

(2(1 + x21 + x22 − 2x1cosu− 2x2sinu)2)

- знаменатель
Приравниваем dH

du = 0 и найдем управляющую функцию u

Обозначим:

A = (−2(ψ2x1 − ψ1x2)(x
2
1 + x22)

B = (−2ψ1x1x2 + ψ2(x
2
1 + x41 − x22 + 2x21x

2
2 + x42))

C = 2ψ2x1x2 − ψ1(x
4
1 + x22 + x42 + x21(−1 + 2x22))

Получаем что нужно найти u по функции

A+BCos(u) + CSin(u) = 0

Получаем :

u = 2(πn+ arctan(
−C −

√
−A2 +B2 + C2

A−B
)), n ∈ Z (2.5)

u = 2(πn+ arctan(

√
−A2 +B2 + C2 − C

A−B
)), n ∈ Z (2.6)

Теорема 2.1. Границей множества достижимости уравнения Левнера
(Левнера-Куфарева) является кривая Г, заданная параметрическими урав-
нениями
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x1 = x1(T, τ), x2 = x2(T, τ),

где x1(T, τ), x2(T, τ) это решение x1(t), x2(t) дифференциальных уравнений
(2.2, 2.3) системы (2.4) в момент t = T , в которой τ служит начальным
условием ψ2(0) = τ , а управляющая функция u(t) задается уравнением (2.5)
согласно принципу максимума Понтрягина. Кривая Г состоит из двух кривых
Г1 и Г2, которые соответствуют начальным данным ψ1(0) = 1 и ψ2(0) = −1,
соответственно, в системе (2.4).
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ЗАКЛЮЧЕНИЕ

В данной выпускной работе былии достигнуты следующие цели и задачи:
- описаны вариационные и параметрические методы в эксремальных зада-

чах для однолистных функций;
- рассмотрены общие задачи о системах функционалов и системах коэф-

фициентов;
- дана оценка коэффициентов для ограниченных однолистных функций,

а именно рассмотрена гипотеза Кжижа и обобщенная гипотеза Кжижа;
- проделана практическая работа, а именно построена область(множество)

достижимости уравнения Левнера-Куфарева.
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ПРИЛОЖЕНИЕ А

(∗ : : Package : : ∗)

W[ x1_ , x2_ , u_] = Exp [ I∗u ] ∗(−x1 − I∗x2 )
/(Exp [ I∗u ] − x1 − I∗x2 )

dx1dt [ x1_ , x2_ , psi1_ , psi2_ , u_] =
Fu l l S imp l i f y [ ComplexExpand [Re [W[ x1 , x2 , u ] ] ] ]

dx2dt [ x1_ , x2_ , psi1_ , psi2_ , u_] =
Fu l l S imp l i f y [ ComplexExpand [ Im [W[ x1 , x2 , u ] ] ] ]

H[ x1_ , x2_ , psi1_ , psi2_ , u_] =
Fu l l S imp l i f y [ p s i 1 ∗dx1dt [ x1 , x2 , ps i1 , ps i2 , u ] +
ps i 2 ∗dx2dt [ x1 , x2 , ps i1 , ps i2 , u ] ]

DPSI1 [ x1_ , x2_ , psi1_ , psi2_ , u_] =
−Fu l l S imp l i f y [D[H[ x1 , x2 , ps i1 , ps i2 , u ] , x1 ] ]

DPSI2 [ x1_ , x2_ , psi1_ , psi2_ , u_] =
−Fu l l S imp l i f y [D[H[ x1 , x2 , ps i1 , ps i2 , u ] , x2 ] ]

DH[ x1_ , x2_ , u ] =
Fu l l S imp l i f y [D[(− ps i 1 x1−ps i 2 x2+(x1^2+x2^2)
( p s i 1 Cos [ u]+ ps i 2 Sin [ u ] ) )
/(1+x1^2+x2^2−2 x1 Cos [ u]−2 x2 Sin [ u ] ) , u ] ]

s i n (u) (−ps i 1 x1^4 − 2 ps i 1 x1^2 x2^2 + ps i 1 x1^2 −
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ps i 1 x2^4 − ps i 1 x2^2 + 2 ps i 2 x1 x2 ) + cos (u)
(−2 ps i 1 x1 x2 + ps i 2 x1^4 + 2 ps i 2 x1^2 x2^2 + ps i 2 x1^2 +
ps i 2 x2^4 − ps i 2 x2^2) + 2 ps i 1 x1^2 x2 + 2 ps i 1 x2^3 −
2 ps i 2 x1^3 − 2 ps i 2 x1 x2^2

A1∗Sin [ u]+B1∗Cos [ u]+C1==0

ClearAl l [A1 ,B1 ,C1 , tau ]
(∗x1=0.8 , x2=0, p s i 1=−1,p s i 2 =3)∗)
A1 [ x1_ , x2_ , psi1_ , psi2_ ] = (−ps i 1 x1^4 − 2 ps i 1 x1^2 x2^2 +
ps i 1 x1^2 − ps i 1 x2^4 − ps i 1 x2^2 + 2 ps i 2 x1 x2 )

B1 [ x1_ , x2_ , psi1_ , psi2_ ] = (−2 ps i 1 x1 x2 + ps i 2 x1^4 +
2 ps i 2 x1^2 x2^2 + ps i 2 x1^2 + ps i 2 x2^4 − ps i 2 x2^2)

C1 [ x1_ , x2_ , psi1_ , psi2_ ] = 2 ps i 1 x1^2 x2 + 2 ps i 1 x2^3 −
2 ps i 2 x1^3 − 2 ps i 2 x1 x2^2

u1 = Fu l l S imp l i f y [ 2 ( \ [ Pi ]∗1+ArcTan [ (A1[0 .8 ,0 ,−1 ,3 ]+
Sqrt [A1[0.8 ,0 ,−1 ,3]^2+B1[0.8 ,0 ,−1 ,3]^2−C1[0 . 8 , 0 , −1 , 3 ]^2 ] ) /
(B1[0.8 ,0 ,−1 ,3]−C1 [ 0 . 8 , 0 , − 1 , 3 ] ) ] ) ]

u2 = Fu l l S imp l i f y [ 2 ( \ [ Pi ]∗1+ArcTan [ (A1[0.8 ,0 ,−1 ,3]−
Sqrt [A1[0.8 ,0 ,−1 ,3]^2−B1[0.8 ,0 ,−1 ,3]^2+C1[0 . 8 , 0 , −1 , 3 ]^2 ] ) /
(B1[0.8 ,0 ,−1 ,3]−C1 [ 0 . 8 , 0 , − 1 , 3 ] ) ] ) ]

Fu l l S imp l i f y [H[ 0 . 8 , 0 , −1, 3 , u1 ] ]

Fu l l S imp l i f y [H[ 0 . 8 , 0 , −1, 3 , u2 ] ]
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u2max [ x1_ , x2_ , psi1_ , psi2_ ] = Fu l l S imp l i f y [ 2 ( \ [ Pi ]∗1+
ArcTan [ ( ( p s i 1 [ t ] x1 [ t ]^2− ps i 1 [ t ] x1 [ t ]^4+2 ps i 2 [ t ] x1 [ t ] x2 [ t ]−
ps i 1 [ t ] x2 [ t ]^2−2 ps i 1 [ t ] x1 [ t ]^2 x2 [ t ]^2− ps i 1 [ t ] x2 [ t ]^4)+
Sqrt [ ( p s i 1 [ t ] x1 [ t ]^2− ps i 1 [ t ] x1 [ t ]^4+2 ps i 2 [ t ] x1 [ t ] x2 [ t ]−
ps i 1 [ t ] x2 [ t ]^2−2 ps i 1 [ t ] x1 [ t ]^2 x2 [ t ]^2− ps i 1 [ t ] x2 [ t ]^4)^2+
( ps i 2 [ t ] x1 [ t ]^2+ ps i 2 [ t ] x1 [ t ]^4−2 ps i 1 [ t ] x1 [ t ] x2 [ t ]−
ps i 2 [ t ] x2 [ t ]^2+2 ps i 2 [ t ] x1 [ t ]^2 x2 [ t ]^2+ ps i 2 [ t ] x2 [ t ]^4)^2−
(−2 ps i 2 [ t ] x1 [ t ]^3+2 ps i 1 [ t ] x1 [ t ]^2 x2 [ t ]−2 ps i 2 [ t ] x1 [ t ]
x2 [ t ]^2+2 ps i 1 [ t ] x2 [ t ] ^ 3 )^2 ] ) / ( ( p s i 2 [ t ] x1 [ t ]^2+ ps i 2 [ t ] x1 [ t ]^4−
2 ps i 1 [ t ] x1 [ t ] x2 [ t ]−ps i 2 [ t ] x2 [ t ]^2+2 ps i 2 [ t ] x1 [ t ]^2 x2 [ t ]^2+
ps i 2 [ t ] x2 [ t ]^4)−(−2 ps i 2 [ t ] x1 [ t ]^3+2 ps i 1 [ t ] x1 [ t ]^2 x2 [ t ]−
2 ps i 2 [ t ] x1 [ t ] x2 [ t ]^2+2 ps i 1 [ t ] x2 [ t ] ^ 3 ) ) ] ) ]

(∗ Fu l l S imp l i f y [ dx1dt [ x1 , x2 , ps i1 , ps i2 , u2max [ x1 , x2 , ps i1 , p s i 2 ] ] ]

Fu l l S imp l i f y [ dx2dt [ x1 , x2 , ps i1 , ps i2 , u2max [ x1 , x2 , ps i1 , p s i 2 ] ] ]

Fu l l S imp l i f y [ DPSI1 [ x1 , x2 , ps i1 , ps i2 , u2max [ x1 , x2 , ps i1 , p s i 2 ] ] ]

Fu l l S imp l i f y [ DPSI2 [ x1 , x2 , ps i1 , ps i2 , u2max [ x1 , x2 , ps i1 , p s i 2 ] ] ] ∗ )

Points1 = {{0 .018186240332942607 ‘ ,0 . ‘ }}

Points2 = {{0 .018186240332942607 ‘ ,0 . ‘ }}

Points3 = {{0 .0816567 ,0 .}}

Points4 = {{0 .0816567 ,0 .}}

For [T = −1, T >= −8, T−=0.5,

c l e a rA l l [ s o l ] ;
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s o l := NDSolve [

{

x1 ’ [ t ] == (−x1 [ t ]+(x1 [ t ]^2+x2 [ t ]^2)
Cos [ u2max [ x1 , x2 , ps i1 , p s i 2 ] ] ) /
(1+x1 [ t ]^2+x2 [ t ]^2−2 x1 [ t ]
Cos [ u2max [ x1 , x2 , ps i1 , p s i 2 ]]−
2 x2 [ t ] Sin [ u2max [ x1 , x2 , ps i1 , p s i 2 ] ] ) ,

x2 ’ [ t ] == (−x2 [ t ]+(x1 [ t ]^2+x2 [ t ]^2)
Sin [ u2max [ x1 , x2 , ps i1 , p s i 2 ] ] ) /
(1+x1 [ t ]^2+x2 [ t ]^2−2 x1 [ t ]
Cos [ u2max [ x1 , x2 , ps i1 , p s i 2 ]]−
2 x2 [ t ] Sin [ u2max [ x1 , x2 , ps i1 , p s i 2 ] ] ) ,

ps i1 ’ [ t ] == ( ps i 1 [ t ]+(−2 ps i 1 [ t ] x1 [ t ]+
2 ps i 2 [ t ] x2 [ t ] ) Cos [ u2max [ x1 , x2 , ps i1 , p s i 2 ] ]+
(−2 ps i 2 [ t ] x1 [ t ] x2 [ t ]+ ps i 1 [ t ] ( x1 [ t ]−x2 [ t ] ) ( x1 [ t ]+x2 [ t ] ) )
Cos [ 2 u2max [ x1 , x2 , ps i1 , p s i 2 ]]−2 ( p s i 2 [ t ] x1 [ t ]+ ps i 1 [ t ] x2 [ t ] )
Sin [ u2max [ x1 , x2 , ps i1 , p s i 2 ] ]+(2 ps i 1 [ t ] x1 [ t ] x2 [ t ]+
ps i 2 [ t ] ( x1 [ t ]−x2 [ t ] ) ( x1 [ t ]+x2 [ t ] ) )
Sin [ 2 u2max [ x1 , x2 , ps i1 , p s i 2 ] ] ) /
(1+x1 [ t ]^2+x2 [ t ]^2−2 x1 [ t ] Cos [ u2max [ x1 , x2 , ps i1 , p s i 2 ]]−
2 x2 [ t ] Sin [ u2max [ x1 , x2 , ps i1 , p s i 2 ] ] ) ^ 2 ,

ps i2 ’ [ t ] == ( ps i 2 [ t ]−2 ( p s i 2 [ t ] x1 [ t ]+ ps i 1 [ t ] x2 [ t ] )
Cos [ u2max [ x1 , x2 , ps i1 , p s i 2 ] ]+(2 ps i 1 [ t ] x1 [ t ] x2 [ t ]+
ps i 2 [ t ] ( x1 [ t ]−x2 [ t ] ) ( x1 [ t ]+x2 [ t ] ) )
Cos [ 2 u2max [ x1 , x2 , ps i1 , p s i 2 ] ]+2 ( ps i 1 [ t ] x1 [ t ]−
ps i 2 [ t ] x2 [ t ]+(2 ps i 2 [ t ] x1 [ t ] x2 [ t ]+ ps i 1 [ t ]
(−x1 [ t ]^2+x2 [ t ]^2 ) ) Cos [ u2max [ x1 , x2 , ps i1 , p s i 2 ] ] )
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Sin [ u2max [ x1 , x2 , ps i1 , p s i 2 ] ] ) / ( 1+ x1 [ t ]^2+x2 [ t ]^2−
2 x1 [ t ] Cos [ u2max [ x1 , x2 , ps i1 , p s i 2 ]]−2 x2 [ t ]
Sin [ u2max [ x1 , x2 , ps i1 , p s i 2 ] ] ) ^ 2 ,

x1 [0 ]==0.8 ,

x2 [0]==0 ,

p s i 1 [0]==−1,

p s i 2 [0]==T

} ,

{x1 , x2 , ps i1 , p s i 2 } ,

{t , 0 , 10} ,

Method −> { " S t i f f n e s s Sw i t c h i n g " , " Nons t i f fTe s t " −> False }
] ;

AppendTo [ Points1 , { x1 [ 3 ] / . F i r s t [ s o l ] , x2 [ 3 ] / . F i r s t [ s o l ] } ] ;

(∗ Print [ { x1 [ 3 ] / . so l , x2 [ 3 ] / . s o l } ]∗ )

]

For [T = 8 , T >= 1 , T−=0.5,

c l e a rA l l [ s o l ] ;

s o l := NDSolve [
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{

x1 ’ [ t ] == (−x1 [ t ]+(x1 [ t ]^2+x2 [ t ]^2)
Cos [ u2max [ x1 , x2 , ps i1 , p s i 2 ] ] ) /
(1+x1 [ t ]^2+x2 [ t ]^2−2 x1 [ t ]
Cos [ u2max [ x1 , x2 , ps i1 , p s i 2 ]]−
2 x2 [ t ] Sin [ u2max [ x1 , x2 , ps i1 , p s i 2 ] ] ) ,

x2 ’ [ t ] == (−x2 [ t ]+(x1 [ t ]^2+x2 [ t ]^2)
Sin [ u2max [ x1 , x2 , ps i1 , p s i 2 ] ] ) /
(1+x1 [ t ]^2+x2 [ t ]^2−2 x1 [ t ]
Cos [ u2max [ x1 , x2 , ps i1 , p s i 2 ]]−
2 x2 [ t ] Sin [ u2max [ x1 , x2 , ps i1 , p s i 2 ] ] ) ,

ps i1 ’ [ t ] == ( ps i 1 [ t ]+(−2 ps i 1 [ t ] x1 [ t ]+
2 ps i 2 [ t ] x2 [ t ] ) Cos [ u2max [ x1 , x2 , ps i1 , p s i 2 ] ]+
(−2 ps i 2 [ t ] x1 [ t ] x2 [ t ]+ ps i 1 [ t ] ( x1 [ t ]−x2 [ t ] ) ( x1 [ t ]+x2 [ t ] ) )
Cos [ 2 u2max [ x1 , x2 , ps i1 , p s i 2 ]]−2 ( p s i 2 [ t ] x1 [ t ]+ ps i 1 [ t ] x2 [ t ] )
Sin [ u2max [ x1 , x2 , ps i1 , p s i 2 ] ]+(2 ps i 1 [ t ] x1 [ t ] x2 [ t ]+
ps i 2 [ t ] ( x1 [ t ]−x2 [ t ] ) ( x1 [ t ]+x2 [ t ] ) )
Sin [ 2 u2max [ x1 , x2 , ps i1 , p s i 2 ] ] ) /
(1+x1 [ t ]^2+x2 [ t ]^2−2 x1 [ t ] Cos [ u2max [ x1 , x2 , ps i1 , p s i 2 ]]−
2 x2 [ t ] Sin [ u2max [ x1 , x2 , ps i1 , p s i 2 ] ] ) ^ 2 ,

ps i2 ’ [ t ] == ( ps i 2 [ t ]−2 ( p s i 2 [ t ] x1 [ t ]+ ps i 1 [ t ] x2 [ t ] )
Cos [ u2max [ x1 , x2 , ps i1 , p s i 2 ] ]+(2 ps i 1 [ t ] x1 [ t ] x2 [ t ]+
ps i 2 [ t ] ( x1 [ t ]−x2 [ t ] ) ( x1 [ t ]+x2 [ t ] ) )
Cos [ 2 u2max [ x1 , x2 , ps i1 , p s i 2 ] ]+2 ( ps i 1 [ t ] x1 [ t ]−
ps i 2 [ t ] x2 [ t ]+(2 ps i 2 [ t ] x1 [ t ] x2 [ t ]+ ps i 1 [ t ]
(−x1 [ t ]^2+x2 [ t ]^2 ) ) Cos [ u2max [ x1 , x2 , ps i1 , p s i 2 ] ] )
Sin [ u2max [ x1 , x2 , ps i1 , p s i 2 ] ] ) / ( 1+ x1 [ t ]^2+x2 [ t ]^2−
2 x1 [ t ] Cos [ u2max [ x1 , x2 , ps i1 , p s i 2 ]]−2 x2 [ t ]
Sin [ u2max [ x1 , x2 , ps i1 , p s i 2 ] ] ) ^ 2 ,
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x1 [0 ]==0.8 ,

x2 [0]==0 ,

p s i 1 [0]==−1,

p s i 2 [0]==T

} ,

{x1 , x2 , ps i1 , p s i 2 } ,

{t , 0 , 10} ,

Method −> { " S t i f f n e s s Sw i t c h i n g " , " Nons t i f fTe s t " −> False }
] ;

AppendTo [ Points2 , { x1 [ 3 ] / . F i r s t [ s o l ] , x2 [ 3 ] / . F i r s t [ s o l ] } ] ;

(∗ Print [ { x1 [ 3 ] / . so l , x2 [ 3 ] / . s o l } ]∗ )

]

For [T = −1, T >= −8, T−=0.5,

c l e a rA l l [ s o l ] ;

s o l := NDSolve [

{

x1 ’ [ t ] == (−x1 [ t ]+(x1 [ t ]^2+x2 [ t ]^2)
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Cos [ u2max [ x1 , x2 , ps i1 , p s i 2 ] ] ) /
(1+x1 [ t ]^2+x2 [ t ]^2−2 x1 [ t ]
Cos [ u2max [ x1 , x2 , ps i1 , p s i 2 ]]−
2 x2 [ t ] Sin [ u2max [ x1 , x2 , ps i1 , p s i 2 ] ] ) ,

x2 ’ [ t ] == (−x2 [ t ]+(x1 [ t ]^2+x2 [ t ]^2)
Sin [ u2max [ x1 , x2 , ps i1 , p s i 2 ] ] ) /
(1+x1 [ t ]^2+x2 [ t ]^2−2 x1 [ t ]
Cos [ u2max [ x1 , x2 , ps i1 , p s i 2 ]]−
2 x2 [ t ] Sin [ u2max [ x1 , x2 , ps i1 , p s i 2 ] ] ) ,

ps i1 ’ [ t ] == ( ps i 1 [ t ]+(−2 ps i 1 [ t ] x1 [ t ]+
2 ps i 2 [ t ] x2 [ t ] ) Cos [ u2max [ x1 , x2 , ps i1 , p s i 2 ] ]+
(−2 ps i 2 [ t ] x1 [ t ] x2 [ t ]+ ps i 1 [ t ] ( x1 [ t ]−x2 [ t ] ) ( x1 [ t ]+x2 [ t ] ) )
Cos [ 2 u2max [ x1 , x2 , ps i1 , p s i 2 ]]−2 ( p s i 2 [ t ] x1 [ t ]+ ps i 1 [ t ] x2 [ t ] )
Sin [ u2max [ x1 , x2 , ps i1 , p s i 2 ] ]+(2 ps i 1 [ t ] x1 [ t ] x2 [ t ]+
ps i 2 [ t ] ( x1 [ t ]−x2 [ t ] ) ( x1 [ t ]+x2 [ t ] ) )
Sin [ 2 u2max [ x1 , x2 , ps i1 , p s i 2 ] ] ) /
(1+x1 [ t ]^2+x2 [ t ]^2−2 x1 [ t ] Cos [ u2max [ x1 , x2 , ps i1 , p s i 2 ]]−
2 x2 [ t ] Sin [ u2max [ x1 , x2 , ps i1 , p s i 2 ] ] ) ^ 2 ,

ps i2 ’ [ t ] == ( ps i 2 [ t ]−2 ( p s i 2 [ t ] x1 [ t ]+ ps i 1 [ t ] x2 [ t ] )
Cos [ u2max [ x1 , x2 , ps i1 , p s i 2 ] ]+(2 ps i 1 [ t ] x1 [ t ] x2 [ t ]+
ps i 2 [ t ] ( x1 [ t ]−x2 [ t ] ) ( x1 [ t ]+x2 [ t ] ) )
Cos [ 2 u2max [ x1 , x2 , ps i1 , p s i 2 ] ]+2 ( ps i 1 [ t ] x1 [ t ]−
ps i 2 [ t ] x2 [ t ]+(2 ps i 2 [ t ] x1 [ t ] x2 [ t ]+ ps i 1 [ t ]
(−x1 [ t ]^2+x2 [ t ]^2 ) ) Cos [ u2max [ x1 , x2 , ps i1 , p s i 2 ] ] )
Sin [ u2max [ x1 , x2 , ps i1 , p s i 2 ] ] ) / ( 1+ x1 [ t ]^2+x2 [ t ]^2−
2 x1 [ t ] Cos [ u2max [ x1 , x2 , ps i1 , p s i 2 ]]−2 x2 [ t ]
Sin [ u2max [ x1 , x2 , ps i1 , p s i 2 ] ] ) ^ 2 ,

x1 [0 ]==0.8 ,
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x2 [0]==0 ,

p s i 1 [0]==1 ,

p s i 2 [0]==T

} ,

{x1 , x2 , ps i1 , p s i 2 } ,

{t , 0 , 10} ,

Method −> { " S t i f f n e s s Sw i t c h i n g " , " Nons t i f fTe s t " −> False }
] ;

AppendTo [ Points3 , { x1 [ 3 ] / . F i r s t [ s o l ] , x2 [ 3 ] / . F i r s t [ s o l ] } ] ;

(∗ Print [ { x1 [ 3 ] / . so l , x2 [ 3 ] / . s o l } ]∗ )

]

For [T = 8 , T >= 1 , T−=0.5,

c l e a rA l l [ s o l ] ;

s o l := NDSolve [

{

x1 ’ [ t ] == (−x1 [ t ]+(x1 [ t ]^2+x2 [ t ]^2)
Cos [ u2max [ x1 , x2 , ps i1 , p s i 2 ] ] ) /
(1+x1 [ t ]^2+x2 [ t ]^2−2 x1 [ t ]
Cos [ u2max [ x1 , x2 , ps i1 , p s i 2 ]]−
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2 x2 [ t ] Sin [ u2max [ x1 , x2 , ps i1 , p s i 2 ] ] ) ,

x2 ’ [ t ] == (−x2 [ t ]+(x1 [ t ]^2+x2 [ t ]^2)
Sin [ u2max [ x1 , x2 , ps i1 , p s i 2 ] ] ) /
(1+x1 [ t ]^2+x2 [ t ]^2−2 x1 [ t ]
Cos [ u2max [ x1 , x2 , ps i1 , p s i 2 ]]−
2 x2 [ t ] Sin [ u2max [ x1 , x2 , ps i1 , p s i 2 ] ] ) ,

ps i1 ’ [ t ] == ( ps i 1 [ t ]+(−2 ps i 1 [ t ] x1 [ t ]+
2 ps i 2 [ t ] x2 [ t ] ) Cos [ u2max [ x1 , x2 , ps i1 , p s i 2 ] ]+
(−2 ps i 2 [ t ] x1 [ t ] x2 [ t ]+ ps i 1 [ t ] ( x1 [ t ]−x2 [ t ] ) ( x1 [ t ]+x2 [ t ] ) )
Cos [ 2 u2max [ x1 , x2 , ps i1 , p s i 2 ]]−2 ( p s i 2 [ t ] x1 [ t ]+ ps i 1 [ t ] x2 [ t ] )
Sin [ u2max [ x1 , x2 , ps i1 , p s i 2 ] ]+(2 ps i 1 [ t ] x1 [ t ] x2 [ t ]+
ps i 2 [ t ] ( x1 [ t ]−x2 [ t ] ) ( x1 [ t ]+x2 [ t ] ) )
Sin [ 2 u2max [ x1 , x2 , ps i1 , p s i 2 ] ] ) /
(1+x1 [ t ]^2+x2 [ t ]^2−2 x1 [ t ] Cos [ u2max [ x1 , x2 , ps i1 , p s i 2 ]]−
2 x2 [ t ] Sin [ u2max [ x1 , x2 , ps i1 , p s i 2 ] ] ) ^ 2 ,

ps i2 ’ [ t ] == ( ps i 2 [ t ]−2 ( p s i 2 [ t ] x1 [ t ]+ ps i 1 [ t ] x2 [ t ] )
Cos [ u2max [ x1 , x2 , ps i1 , p s i 2 ] ]+(2 ps i 1 [ t ] x1 [ t ] x2 [ t ]+
ps i 2 [ t ] ( x1 [ t ]−x2 [ t ] ) ( x1 [ t ]+x2 [ t ] ) )
Cos [ 2 u2max [ x1 , x2 , ps i1 , p s i 2 ] ]+2 ( ps i 1 [ t ] x1 [ t ]−
ps i 2 [ t ] x2 [ t ]+(2 ps i 2 [ t ] x1 [ t ] x2 [ t ]+ ps i 1 [ t ]
(−x1 [ t ]^2+x2 [ t ]^2 ) ) Cos [ u2max [ x1 , x2 , ps i1 , p s i 2 ] ] )
Sin [ u2max [ x1 , x2 , ps i1 , p s i 2 ] ] ) / ( 1+ x1 [ t ]^2+x2 [ t ]^2−
2 x1 [ t ] Cos [ u2max [ x1 , x2 , ps i1 , p s i 2 ]]−2 x2 [ t ]
Sin [ u2max [ x1 , x2 , ps i1 , p s i 2 ] ] ) ^ 2 ,

x1 [0 ]==0.8 ,

x2 [0]==0 ,

p s i 1 [0]==1 ,
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ps i 2 [0]==T

} ,

{x1 , x2 , ps i1 , p s i 2 } ,

{t , 0 , 10} ,

Method −> { " S t i f f n e s s Sw i t c h i n g " , " Nons t i f fTe s t " −> False }
] ;

AppendTo [ Points4 , { x1 [ 3 ] / . F i r s t [ s o l ] , x2 [ 3 ] / . F i r s t [ s o l ] } ] ;

(∗ Print [ { x1 [ 3 ] / . so l , x2 [ 3 ] / . s o l } ]∗ )

]

p l t 1 = L i s tP l o t [ { Points1 , Points2 } ,

Joined−>True ,

PlotRange −> Ful l ]

p l t 2 = L i s tP l o t [ { Points3 , Points4 } ,

Joined−>True ,

PlotRange −> Ful l ]

(∗ Print [ Points1 , Points2 , Points3 , Points4 ]∗ )
p l t 3= L i s tP l o t [
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{{0 .018186240332942607 ‘ ,0 . ‘ } ,

{0.01819988721259982 ‘ ,−0.0032861745198986382 ‘} ,

{0.018150035635625304 ‘ ,−0.004261362072169963 ‘} ,

{0.01818308081283647 ‘ ,−0.004949289368649365 ‘} ,

{0.018179381821112187 ‘ ,−0.005440488784115197 ‘} ,

{0.018176124073179416 ‘ ,−0.005807656543520612 ‘} ,

{0.018173372356245762 ‘ ,−0.006091221052643722 ‘} ,

{0.018171049057779914 ‘ ,−0.0063162582458786195 ‘} ,

{0.01816906362160758 ‘ ,−0.006498922183408405 ‘} ,

{0.018167341378006307 ‘ ,−0.006650008631615047 ‘} ,

{0.018165825733086054 ‘ ,−0.0067769742700759875 ‘} ,

{0.018164474670100253 ‘ ,−0.006885120634901399 ‘} ,

{0.01816325693160415 ‘ ,−0.006978313366948118 ‘} ,

{0.018162149009682754 ‘ ,−0.007059433990294394 ‘} ,

{0.018161132960771792 ‘ ,−0.007130672439029182 ‘} ,

{0.018142511188364074 ‘ ,−0.007190272778218646 ‘} ,

{0 .018186240332942607 ‘ , 0 . ‘ } ,
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{0.01814251117697468 ‘ ,0 .007190272775051892 ‘} ,

{0 .01816113296030316 ‘ ,0 .007130672438890455 ‘} ,

{0 .018162149009766225 ‘ ,0 .0070594339903189435 ‘} ,

{0 .0181632569315307 ‘ ,0 .006978313366926767 ‘} ,

{0 .018164474669710756 ‘ ,0 .006885120634789002 ‘} ,

{0 .018165825733765996 ‘ ,0 .00677697427026995 ‘} ,

{0 .01816734137779947 ‘ ,0 .00665000863155692 ‘} ,

{0 .018169063621388235 ‘ ,0 .006498922183347909 ‘} ,

{0 .018171049058123466 ‘ ,0 .006316258245971035 ‘} ,

{0 .018173372356491024 ‘ ,0 .006091221052707669 ‘} ,

{0 .01817612407327933 ‘ ,0 .005807656543545573 ‘} ,

{0 .018179381821511725 ‘ ,0 .005440488784209248 ‘} ,

{0 .018183080813034148 ‘ ,0 .004949289368691843 ‘} ,

{0 .01815003561926432 ‘ ,0 .004261362069222928 ‘} ,

{0 .01819988721325401 ‘ ,0 .003286174519993552 ‘}} ,

Joined−>True ,
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PlotRange −> All ,

P l o tS ty l e −> Red ]

p l t 4 =

L i s tP l o t [

{{0 . 0816567 ‘ , 0 . ‘ } ,

{0.020698048262029825 ‘ ,−0.02378181233529464 ‘} ,

{0.01874086494398789 ‘ ,−0.01706045160393311 ‘} ,

{0.018405456587168474 ‘ ,−0.01428169601293776 ‘} ,

{0.01826498625401527 ‘ ,−0.012786148801645001 ‘} ,

{0.018248125348641554 ‘ ,−0.011895278141811752 ‘} ,

{0.01823845048446985 ‘ ,−0.011290061047240502 ‘} ,

{0.018232082141084516 ‘ ,−0.010854653835228776 ‘} ,

{0.018224840631243456 ‘ ,−0.01052610792234326 ‘} ,

{0.018217102926908653 ‘ ,−0.010269460575965172 ‘} ,

{0.01821049850051784 ‘ ,−0.010063808276687573 ‘} ,

{0.018204798262292814 ‘ ,−0.009895406018918348 ‘} ,

{0.018199822036506743 ‘ ,−0.00975501747233615 ‘} ,
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{0.01819543403898186 ‘ ,−0.009636214845016412 ‘} ,

{0.018191530443972207 ‘ ,−0.00953439043858659 ‘} ,

{0.018188030691026265 ‘ ,−0.009446156955822344 ‘} ,

(∗{0 . 0816567 ‘ , 0 . ‘ } ,∗ )

{0 .018188030690509477 ‘ ,0 .009446156955621343 ‘} ,

{0 .01819153044425481 ‘ ,0 .009534390438698052 ‘} ,

{0 .01819543403841862 ‘ ,0 .0096362148447911 ‘} ,

{0 .018199822036182728 ‘ ,0 .009755017472204438 ‘} ,

{0 .018204798262127196 ‘ ,0 .009895406018849584 ‘} ,

{0 .018210498500369102 ‘ ,0 .010063808276624451 ‘} ,

{0 .018217102926874673 ‘ ,0 .010269460575950391 ‘} ,

{0 .01822484063121412 ‘ ,0 .010526107922334261 ‘} ,

{0 .018232082140564033 ‘ ,0 .010854653835058365 ‘} ,

{0 .018238450484217048 ‘ ,0 .011290061047151622 ‘} ,

{0 .018248125349302608 ‘ ,0 .011895278142067752 ‘} ,

{0 .01826498625418162 ‘ ,0 .01278614880170449 ‘} ,

32



{0.018405456586667285 ‘ ,0 .014281696012712366 ‘} ,

{0 .018740864943924733 ‘ ,0 .017060451603914988 ‘} ,

{0 .02069804826183299 ‘ ,0 .023781812335221274 ‘} ,

{0 . 0816567 ‘ , 0 . ‘ }
} ,

Joined−>True ,

PlotRange −> All ,

P l o tS ty l e −> PointS i ze [ Large ] ]

Show [ plt3 , p lt4 , PlotRange−>Ful l ]

Рисунок 2.1 — Область достижимости уравнения Левнера-Куфарева
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