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Введение. Основная цель этой выпускной квалификационной работы - изу-
чить теорию Лапласиана Ходжа на графе и рассмотреть ее практическое
применение.

Если классическая теория Ходжа на римановых многообразиях является
«дифференцируемой теорией Ходжа», теория Ходжа на метрических про-
странствах «непрерывной теорией Ходжа», а теория Ходжа на симплици-
альных комплексах «дискретной теории Ходжа», то здесь можно говорить о
«теоретико-графовой теорией Ходжа».

В отличие от физических задач, возникающих в таких областях, как меха-
ника сплошных сред или электромагнетизм, где дифференцируемая теория
Ходжа-де Рама с большой эффективностью применялась как для модели-
рования, так и для вычислений, возникающих из приложений для анализа
данных. Теоретико-графовой теорией Ходжа будет изложена для неориенти-
рованного графа, и больше подходит для нефизических приложений, возни-
кающих в различных разделах обработки информации, таких как машинное
обучение, матричные вычисления, числовые уравнениями в частных произ-
водных, оптимизация, статистика или теорией вычислений.

Первый раздел работы посвящен изложению теории когомологий, необхо-
димой для построения Лапласиана Ходжа. При этом когомологии определя-
ются чисто алгебраически через линейную алгебру матриц, удовлетворяющих
условию AB = 0.

Второй раздел содержит основные результаты теоретического исследова-
ния по выбранной теме для операторов Лапласа и Гельмгольца на графе.

В заключительной части работы представлены обобщения полученных
результатов для высших порядков. Как показывают конкретные вычисления
по разобранным в работе методам, подсчет Лапласианов и операторов Гельм-
гольца высших порядков также бывает важен в зависимости от поставленной
задачи.

Для упрощения обсчета графов были использованы программы на языке
C++, код которых приведен в приложениях.
Основное содержание работы. Рассмотрим две матрицы A ∈ Rm×n и
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B ∈ Rn×p, удовлетворяющие свойству

AB = 0. (1)

(1) эквивалентно включению im(B) ⊆ ker(A). Тогда определим группу ко-
гомологий относительно A и B как фактор-группу векторных пространств,
ker(A)/im(B). Ее элементы будем называть классами когомологий. Слово
«группа» здесь относится к структуре ker(A)/im(B), как абелевой группы
по сложению.

Элемент когомологий ker(A)/im(B) представляет собой набор векторов
x + im(B) = {x + y ∈ Rn| y ∈ im(B)} для некоторого x ∈ ker(A). Задача
заключается в выборе xH ∈ x + im(B) каким-то уникальным способом для
представления всего множества.

Предложение 1. Пусть A ∈ Rm×n. Тогда

1. ker(A∗A) = ker(A), (2)

2. ker(A∗) = im(A)⊥, (3)

3. im(A∗) = ker(A)⊥, (4)

4. Rn = ker(A)⊕ im(A∗), (5)

5. im(A∗A) = im(A∗). (6)

Стандартный способ определения уникального представителя это - вы-
брать xH так, чтобы он был ортогонален любому другому вектору в im(B).
Поскольку im(B)⊥ = ker(B∗), (предложение 1) это эквивалентно требова-
нию, чтобы xH ∈ ker(B∗).

Следовательно, нужно выбрать xH ∈ ker(A)∩ker(B∗). Такой xH называ-
ется гармоническим представителем класса когомологий x+ im(B).

Предложение 2 Пусть A ∈ Rm×n и B ∈ Rn×p, AB = 0. Тогда следующие
пространства естественным образом изоморфны: ker(A)/im(B) ∼= ker(A)∩
∩ker(B∗) ∼= ker(B∗)/im(A∗).

Отображение, сопоставляющее классу когомологий x+ im(B) единствен-
ный гармонический представитель xH , дает естественный изоморфизм век-
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торных пространств,

ker(A)/im(B) ∼= ker(A) ∩ ker(B∗). (7)

Таким образом, можем переопределить группу когомологий относительно
A и B как подпространство ker(A)∩ker(B∗) в Rn, а класс когомологий теперь
можно рассматривать как действительный вектор xH ∈ ker(A) ∩ ker(B∗).

Положим, что AB = 0. Тогда определим Лапласиан Ходжа следующим
образом:

A∗A+BB∗ ∈ Rn×n. (8)

Предложение 3. Пусть A ∈ Rm×n и B ∈ Rn×p, а AB = 0. Тогда

1. ker(A∗A+BB∗) = ker(A) ∩ ker(B∗), (9)

2. ker(A) = im(B)⊕ ker(A∗A+BB∗), (10)

3. ker(B∗) = im(A∗)⊕ ker(A∗A+BB∗), (11)

4. Rn = im(A∗)⊕ ker(A∗A+BB∗)⊕ im(B), (12)

5. im(A∗A+BB∗) = im(A∗)⊕ im(B). (13)

Используя (8), получим, что гармонический представитель xH является
решением уравнения Лапласа

(A∗A+BB∗)x = 0. (14)

Поскольку решения уравнения Лапласа называются гармоническими функ-
циями, этим и объясняется название «гармонический» представитель.

Из (14) следует, что можно определить группу когомологий (относительно
A и B) как ядро Лапласиана Ходжа, то есть ker(A)/im(B) ∼= ker(A∗A+

+BB∗).

Доказанная в предложении 3 формула (12) представляет собой разложе-
ние Ходжа (разложение в прямую сумму ортогональных пространств). Дру-
гими словами, всякий раз, когда AB = 0, каждый x ∈ Rn может быть
однозначно разложен как x = A∗w + xH + Bv, ⟨A∗w, xH⟩ = ⟨xH , Bv⟩ =

= ⟨A∗w,Bv⟩ = 0 для некоторых v ∈ Rp и w ∈ Rm.
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Напомним известные разложения (иногда называемые альтернативой
Фредгольма), связанные с четырьмя фундаментальными подпространства-
ми, связанными с матрицей A ∈ Rm×n, (предложение 1)

Rn = ker(A)⊕ im(A∗), Rm = ker(A∗)⊕ im(A). (15)

Разложение Ходжа (6) можно рассматривать как аналог (7) для пары матриц,
удовлетворяющих условию AB = 0. Действительно, объединяя (6) и (15),
получаем

Rn =

ker(B∗)︷ ︸︸ ︷
im(A∗)⊕ ker(A∗A+BB∗)⊕im(B)

Rn = im(A∗)⊕ ker(A∗A+BB∗)⊕ im(B)︸ ︷︷ ︸
ker(A)

Пересечение ker(A) и ker(B∗) дает ker(A∗A+ +BB∗), подтверждая (4). По-
скольку A∗A+BB∗ - эрмитово, отсюда также следует, что

im(A∗A+BB∗) = im(A∗)⊕ im(B). (16)

Для частного случая, когда A - произвольная матрица и B = 0, разложе-
ние Ходжа (6) принимает вид

Rn = im(A∗)⊕ ker(A∗A), (17)

которая также может быть выведена непосредственно из альтернативы Фред-
гольма (7), поскольку

ker(A∗A) = ker(A). (18)

Таким образом, было рассмотрено три различных способа определения
когомологий: если A и B - матрицы, удовлетворяющие AB = 0, то груп-
па когомологий относительно A и B может быть принята в виде любого из
следующих выражений:

ker(A)/im(B), ker(A) ∩ ker(B∗), ker(A∗A+BB∗). (19)
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Заметим, что если AB = 0, то B∗A∗ = 0, и можем позволить B∗ и A∗

играть роль A и B соответственно. Тогда группа гомологии по отношению к
A и B может быть любой из следующих:

ker(B∗)/im(A∗), ker(B∗) ∩ ker(A), ker(BB∗ + A∗A). (20)

Можно увидеть, что последние два пространства в (12) и (13) совпадают, т.
е. между когомологиями и гомологиями в нашем контексте нет разницы.

Когомологии, построенные в предыдущем разделе, основаны исключи-
тельно на линейной алгебре операторов, удовлетворяющих условию AB = 0.
Это «алгебраическая сторона» вопроса. Существует также «топологическая
сторона», которая получается путем наложения требования, чтобы A и B

были кограничными операторами. Но сначала вспомним основные понятия.
Пусть G = (V,E) - неориентированный невзвешанный граф без петель

и кратных ребер, где V = {1, . . . , n} - конечное множество вершин, а
E ⊆

(
V
2

)
- множество ребер. Заметим, что как только задается G, авто-

матически получаем клики более высокого порядка — например, множество
треугольников или 3-клики T ⊆

(
V
3

)
определяется формулой {i, j, k} ∈

∈ T ⇔ {i, j}, {i, k}, {j, k} ∈ E. В более общем случае множество k-клики
Kk(G) ⊆

(
V
k

)
определяется формулой {i1, . . . , ik} ∈ Kk(G) ⇔ {ip, iq} ∈ E

для всех 1 ≤ p < q ≤ k, т. е. все пары вершин в {i1, . . . , ik} лежат в E.
Ясно, что задание V и E однозначно определяет Kk(G) для всех k ≥ 3. В
частности, имеем K1(G) = V, K2(G) = E, K3(G) = T.

На топологическом языке непустое семейство K конечных подмножеств
множества V называется симплициальным комплексом (точнее, абстрактным
симплициальным комплексом), если для любого множества S в K каждое
подмножество S ′ ⊆ S также принадлежит K.

Ясно, множество, состоящее из всех кликов графа G, K(G) =
ω(G)⋃
k=1

Kk(G),

является симплициальным комплексом и называется кликовым комплексом
графа G. Кликовое число ω(G) - это число вершин в наибольшем клике графа
G.

Для графа G = (V,E) будем рассматривать вещественнозначные функ-
ции на его вершинах f : V → R. Также будем рассматривать веществен-
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нозначные функции на E, T и в общем случае на Kk(G), но потребуем, что-
бы они были знакопеременными. Под знакопеременной функцией на E будем
понимать функцию вида X : V × V → R, где X(i, j) = −X(j, i) для всех
{i, j} ∈ E и X(i, j) = 0 для всех {i, j} /∈ E.

Знакопеременной функцией на T называется функция вида Φ : V × V×
×V → R , где Φ(i, j, k) = Φ(j, k, i) = Φ(k, i, j) = −Φ(j, i, k) = −Φ(i, k, j) =

= −Φ(k, j, i) для всех {i, j, k} ∈ T и Φ(i, j, k) = 0 для всех {i, j, k} /∈ T .
В более общем смысле знакопеременная функция — это функция, в ко-

торой перестановка аргументов приводит к изменению ее значения на знак
перестановки.

На топологическом языке функции f, X, Φ называются 0−, 1−, 2− коце-
пями. Это дискретные аналоги дифференциальных форм на многообразиях.
Поэтому, можно функции f, X, Φ называть 0−, 1−, 2−формами на G.

Заметим, что 1−форма X полностью задается значениями, которые она
принимает на множестве {(i, j) : i < j}, а 2−форма Φ полностью задается
значениями, которые она принимает на множестве {(i, j, k) : i < j < k}.

Снабдим пространства коцепей скалярными произведениями, например,
в виде взвешенных сумм

⟨f, g⟩V =
n∑

i=1

wif(i)g(i), ⟨X, Y ⟩E =
∑
i<j

wijX(i, j)Y (i, j),

⟨Φ,Φ⟩T =
∑
i<j<k

wijkΦ(i, j, k)Φ(i, j, k),
(21)

где веса wi, wij, wijk задаются любыми положительными значениями, инва-
риантными относительно произвольной перестановки индексов. Когда веса
принимают постоянное значение 1, будем называть их стандартными скаляр-
ными произведениями. Суммируя только по множествам {(i, j) : i < j} и
{(i, j, k) : i < j < k}, будем считать каждое ребро или треугольник ровно
один раз в скалярных произведениях.

Обозначать гильбертово пространства 0−, 1− и 2−коцепей как
L2(V ), L2

∧(E) и L2
∧(T ) соответственно. Нижний индекс ∧ предназначен для

обозначения знакопеременности. Заметим, что L2
∧(V ) = L2(V ), так как для

функции одного аргумента знакопеременность не определяется.
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Положим L2
∧(∅) = {0} по определению. Префикс L2 означает на наличие

скалярного произведения.
Элементы L2

∧(E) (т.е. 1−формы) хорошо известны в теории графов и ча-
сто называются потоками на ребрах. Хотя графы, рассматриваемые в ра-
боте всегда неориентированные и невзвешенные, ориентированный граф —
это просто граф, оснащенный выбором потока на ребрах X ∈ L2

∧(E), вслед-
ствие чего неориентированное ребро {i, j} ∈ E становится ребром (i, j), если
X(i, j) > 0, или (j, i), если X(i, j) < 0, а величина X(i, j) может быть при-
нята как вес этого ориентированного ребра. Таким образом, L2

∧(E) дает все
взвешенные ориентированные графы, которые в основе своей имеют одина-
ковую базовую структуру неориентированного исходного графа.

Рассмотрим стандартные скалярные произведения на L2(V ) и L2
∧(E). То-

гда дивергенцию потока на реберах относительно вершины i ∈ V можно
интерпретировать следующим образом

(div X)(i) = (inflow X)(i)− (outflow X)(i), (22)

где inflow и outflow определены соответственно для любого X ∈ L2
∧(E) и

любой i ∈ V как

(inflow X)(i) =
∑

j:X(i,j)<0

X(i, j), (outflow X)(i) =
∑

j:X(i,j)>0

X(i, j).

Для обозначения введенных величин используются термины: входящий по-
ток, исходящий поток и общий поток.

Пусть X ∈ L2
∧(E). Вершина i ∈ V называется стоком X, если X(i, j) < 0

для каждого соседа {i, j} ∈ E вершины i. Точно так же вершина i ∈ V

называется источником X, если X(i, j) > 0 для каждого соседа {i, j} ∈ E

вершины i. В общем, поток на ребрах может не иметь источника или стока.
В этом случае можем записать, что X = −grad f для некоторой f ∈ L2(V ),
часто называемой потенциальной функцией. В этом случае X будет иметь
свойство течь из источников (локальные максимумы f) в стоки (локальные
минимумы f).

Рассмотрим теоретико-графовые аналоги grad, curl и div в многомерном
исчислении. Градиент — это линейный оператор grad : L2(V ) → L2

∧(E),
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определяемый формулой (grad f)(i, j) = f(j) − f(i) для всех {i, j} ∈ E и
ноль в противном случае.

Вихрь — это линейный оператор curl : L2
∧(E) → L2

∧(T ), определяемый
формулой (curl X)(i, j, k) = X(i, j) +X(j, k) +X(k, i) для всех {i, j, k} ∈ T

и ноль в противном случае.
Дивергенция — это линейный оператор div : L2

∧(E) → L2(V ), определяе-

мый формулой (div X)(i) =
n∑

j=1

wij

wi
X(i, j) для всех i ∈ V .

Используя эти определения, можно построить другие линейные операто-
ры, в частности, хорошо известный Лапласиан на графе, ∆0 : L

2(V ) → L2(V ),

определяемый равенством ∆0 = −div grad.

Предложение 2.1 Оператор ∆0 = −div grad дает обычный Лапласиан
на графе.

Менее известен оператор Гельмгольца для графа, это теоретико-графовый
аналог векторного Лапласиана ∆1 : L2

∧(E) → L2
∧(E), определяемый равен-

ством ∆1 = −grad div + curl∗ curl.

Рассмотрим L2
∧(E) и L2

∧(T ) вместе с определенными в (21) скалярными
произведениями. Тогда можем получить следующий факт

Предложение 2.2 Двойственным оператором к оператору curl будет
оператор curl∗, определяемый по следующей формуле.

curl∗ Φ(i, j) =
n∑

k=1

wijk

wij
Φ(i, j, k).

Градиент и вихрь являются частными случаями кограничных операто-
ров, дискретными аналогами внешних производных, а Лапласиан на графе
и оператор Гельмгольца на графе являются частными случаями Лапласиана
Ходжа.

То есть к этим операторам применимы результаты 1-го раздела, где A =

= curl и B = grad. Позже для общего случая произвольной размерности
будет доказано, что

curl grad = 0. (23)
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Предложение 3.1 Для L2(V ) и L2
∧(E) вместе с определенными на них

скалярными произведениями имеет место равенство

grad∗ X(i) = −
n∑

j=1

wij

wi
X(i, j) = −div X(i). (24)

Заключение. В работе была изложена теория Ходжа для графов. В рамках
которой были получены теоретико-графовые аналоги операторов Лапласа и
Гельмгольца. В качестве вспомогательного инструмента была построена тео-
рия когомологий относительно матриц, удовлетворяющих AB = 0. Основной
результат был проверен непосредственными вычислениями для пары графов,
используя программы на языке C++.

Стоит отметить, что простой подход к когомологиям и теории Ходжа, ис-
пользованный в работе требует только линейной алгебры и теории графов.
При изложении основной теории алгебра была полностью изолирована от то-
пологии, чтобы показать, что большая часть когомологий и теории Ходжа
есть не что иное, как линейная алгебра матриц. Что касается оставшего-
ся топологического аспекта, рассуждения проводятся в терминах графов, а
не через симплициальные комплексы. Такая форма построения теории, ис-
пользуя простую структуру, позволяет облегчить разработку приложений.
приложений.

10


