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Введение. Р-адическое число — теоретико-числовое понятие, определяемое
для заданного фиксированного простого числа p как элемент расширения
поля рациональных чисел. Это расширение является пополнением поля ра-
циональных чисел относительно p-адической нормы, определяемой на основе
свойств делимости целых чисел на p. P-адические числа были введены Кур-
том Гензелем в 1897 году.

В настоящее время p-адический анализ является быстро развивающимся
направлением в математике. Многочисленные применения p-адических чисел
привели к теории p-адических дифференциальных уравнений, p-адической
теории вероятностей, p-адической математической физике и так далее. P-
адические числа также тесно связаны с диофантовыми уравнениями, т. е. с
отысканием всех решений системы полиномиальных уравнений или с оцен-
кой числа ее решений над полем p-адических чисел Qp. Но одна и та же
диофантова задача может иметь разные решения в поле p-адических чисел
и в поле действительных чисел из-за различных топологических структур.
р-адические числа находят широкое применение в теоретической физике.

Известны p-адические обобщённые функции, p-адический аналог операто-
ра дифференцирования, p-адическая квантовая механика, p-адическая спек-
тральная теория, p-адическая теория струн

Функции, известные в теории автоматов как детерминированные оказыва-
ются в точности теми функциями, которые удовлетворяют условию Липшица
с коэффициентом 1.

Задачами данной работы являются:
IРассмотрение р-адических чисел
IРассмотрение метрики р-адических чисел
IПостроение поля р-адических чисел
IРассмотрение Функции класса Липшица
IРассмотрение диффериндирования по модулю в поле p-адических чисел

Основное содержание работы. Рассмотрим основные понятия
Пусть X - не пустое множество. Функция d, определенная на множестве

всех упорядоченных пар (x,y) элементов X и принимающая неотрицательные
вещественные значения d(x,y), называется расстоянием или метрикой в X,
если она обладает следующими свойствами:
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1. d(x,y) = 0 тогда и тольно тогда, когда x = y;
2. d(x,y) = d(y,x);
3. d(x, y) ≤ d(x, z) + d(z, y) ∀z ∈ X.

Множество X вместе с заданной в нём метрикой d называется метри-
ческим пространством. Одно и то же множество X может допускать много
различных структур метрического пространства (X,d).

Чаще всего в качестве множеств X будем рассматривать поля. Поле F
есть множество с двумя бинарными операциями «+» и «·», такими, что F
является коммутативной группой относительно операции «+», а F-0 отно-
сительно операции «·», и выполнен закон дистрибутивности. Например это
поля рациональных чисел Q и поле вещественных чисел R.

Определение 1.1. Нормой на поле F называется отображение, обознача-
емое через || ||, поля F в множество неотрицательных вещественных чисел,
такое, что:

1. ||x||=0 тогда и только тогда, когда x=0;
2. ||x·y|| = ||x||·||y||;
3. ||x+y||≤||x||+||y|| (неравенство треугольника). В общем случае вместо

аксиомы (2) используется следующая:
2’ ||xy|| ≤ ||x||||y||. В этом случае функция || · || называется псевдонор-

мой. Норма || · || называется неархимедовой, если она удовлетворяет
дополнительному условию:

3’ ||x+ y|| ≤ ||max(||x||, ||y||) (сильное неравенство треугольника)
Когда говорится, что метрика d «соответствует» норме (или «индуци-

рована» нормой) || ||, то под этим понимается, что метрика d определяется
соотношением d(x,y)= ||x-y||. Легко проверить, что функция d, заданная та-
ким образом по произвольной норме || ||, будет действительно метрикой.

Основной пример нормы на поле рациональных чисел Q даёт абсолют-
ная величина |x|. Индуцированная ею метрика d(x,y)=|x-y| совпадает с обыч-
ным расстоянием на числовой прямой

Одна метрика с поля Q известна: она индуцированна обычной абсолют-
ной величиной.

Определение 1.2. Пусть p ∈ 2, 3, 5, 7, 11, 13,. . . - некоторое простое чис-
ло. Для произвольного ненулевого целого числа a положим ordpa равным
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кратности вхождения p в разложение a на простые сомножители, т.е. наи-
большему целому неотрицательному числу m, для которого a ≡ 0(modpm).
Например ord535 = 1, ord5250 = 3. Теперь, для произвольного рационально-
го числа x = a/b положим ordpx равным ordpa − ordpb. Так определенная
величина зависит только от x, т.е. из представления x = ac/bc получается то
же самое значение для ordpx = ordpac− ordpbc

Кроме того, определим Q на следующее отображение | |p:

|x|p =

p
1

ordpx , если x 6= 0;

0, если x = 0

Предложение 2.1. Функция | |p является нормой на поле Q.
Доказательство. Если x=0 или y=0, или x + y = 0, то свойство (3)

очевидно. Поэтому предположим, что числа x,y,x+y отличны от нуля. Пусть
x=a/b и y=c/d - несократимые представления. Тогда x+y = (ad+bc)/bd и
ordp(x+ y) = ordp(ad+ bc)− ordpb− ordpd. Заметим теперь, что наибольшая
степень p, делящая сумму двух целых чисел, не меньше любой степени p,
которая делит одновременно каждое слагаемое. Поэтому

ordp(x+ y) ≥ min (ordpad, ordpbc)− ordpb− ordpd =

= min (ordpa+ ordpd, ordpb+ ordpc)− ordpb− ordpd =

= min (ordpa− ordpb < ordpc− ordpd) = min ordpx < ordpy.

Следовательно, |x+ y|p = p−ordp(x+y) ≤ max (p−ordpx, p−ordpy) = max (|x|p, |y|p),
а последнее ≤ |x|p + |y|p.

В действительности получилось более сильное неравенство, чем требу-
ется в условии, и именно это усиленное неравенство приводит нас к одному
из основных понятий p-адического анализа.

Теорема 2.2. Отображение | · |p является неархимедовой нормой на поле
рациональных чисел Q, т.е. удовлетворяет аксиомам (1.), (2.), (3.) из опреде-
ления .

Доказательство. Очевидно, что аксиома (1.) выполнена. В силу того, что
ordp(xy) = ordpx+ ordpy,аксиома (2.) также выполнена.
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Проверим аксиому (3.). Если x=0 или y=0, или x+y=0, свойство (3.)
тривиально, так что будем считать, что x,y,x+y не равны нулю. Пусть x=a/b,
y=c/d. Тогда имеем x+y=(ab+bc)/bd и

ordp(x+ y) = ordp(ad+ bc) + ordp(bd)

≥ min
(
ordp(ad), ordp(bc)

)
− ordp(b)− ordp(d)

= min
(
ordp(a) + ordp(d), ordp(b) + ordp(c)

)
− ordp(b)− ordp(d)

= min
(
ordp(a)− ordp(b), ordp(c)− ordp(d)

)
= min

(
ordp(x), ordp(y)

)
.

Следовательно,

|x+y|p = p−ordp(x+y) ≤ max

(
p−ordp(x), p−ordp(y)

)
= max

(
|x|p, |y|p

)
≤ |x|p+ |y|p.

Теорема 2.3. (Теорема Островского) Всякая нетривиальная норма ||·|| на
поле Q эквивалентна либо вещественной норме |·|, либо одной из p-адических
норм | · |p.

Известно, что поле рациональных чисел Q не является полным ни по
одной нетривиальной норме. При этом все нетривиальные нормы даются тео-
ремой Островского. Поле вещественных чисел R является пополнением Q по
вещественной норме | · |. Определим поле Qp p-адических чисе как пополне-
ние поля Q по p-адической норме | · |p. Таким образом, пространство Qp -
ультраметрическое. По теореме Островского, существуют два «универсума»:
вещественный и p-адический.

Мы строим Qp посредством процедуры поплнения. Элементами Qp

являются классы эквивалентности последовательностей Коши Q по p-
адической норме. Q можно отождествить с подполем Qp, состоящим из клас-
сов эквивалентности, содержащих постоянные последовательности Коши.

Пусть x ∈ Qp и xn - последовательность Коши рациональных чисел,
представляющая a. Тогда по определению

|x|p
def
= lim

n→∞
|xn|p. (1)
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Если |x|p 6= 0, то последовательность норм xn стабилизируется в смысле
|xn|p = |x|p для достаточно большого n. Этот факт следует также из силь-
ного неравенства треугольника. Действительно, так как |xn − x|p < |x|p для
достаточно большого n, то согласно сильному неравенству треугольника для
достаточно большого n будем иметь:

|xn|p = |(xn − x) + x|p = max(|xn0x|p, |x|p) = |x|p. (2)

Таким образом p-адическая абсолютная величина продолжается Qp, и
имеем

{|x|p : x ∈ Qp} = {|x|p : x ∈ Q} = {pγ : γ ∈ Z} ∪ {0}

В этом смысле, поведение p-адических чисе. При расширении Q и R, ев-
клидова абсолютная величина принимает все неотрицательные действитель-
ные значения

P-адическая норма | · |p на Qp, заданная соотношением 1, обладает сле-
дующими свойствами:

Предложение 3.1. Если x,y ∈ Qp, то
1 |x|p ≥ 0, |x|p = 0⇐⇒ x = 0;
2 |xy|p = |x|p|y|p;
3 |x+ y|p ≤ max(|x|p, |y|p); Более того, если |x|p 6= |y|p то
3’ |x+ y|p = max(|x|p, |y|p)

Таким образом норма на Qp удовлетворяет сильному неравенству тре-
угольника, т.е. является неархимедовой. Для любого n ∈ N |nx|p ≤ |x|p.

Теперь можем распространить p-адическую аддитивную абсолютную
величину (порядок) с Q на Qp : для каждого x ∈ Qp

{0} положим

υp(x) = ordp(x) = − logp |x|p, υp(0) = ordp(0) =∞

Ясно, что соотношение

ordp(xy) = ordp(x) + ordp(y), ordp(x+ y) ≥ min
(
ordp(x), ordp(y)

)
.
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верно для Qp.
Операции, являющиеся в определенном смысле «элементарными»

операциями-командами-для большинства процессов (такие как арифметиче-
ские - сложение и кмножение, логические - OR, XOR, AND и другие - напри-
мер, левый и правый сдвиги SHL, SHR, а также маскирование) и их различ-
ные композиции трактуются, как если бы они были непрерывными и могли
бы быть аппроксимированы дифференцируемыми функциями. Они на самом
деле являются непрерывными и могут быть аппроксимированы дифференци-
руемыми функциями, но в неархимедовой метрике.

Оказалось, что большая часть (если не все множество) таких «элемен-
тарных» для процессора операций (т.е. его команд) допускают простые и
естественные продолжения на множество N0 неотрицательных рациональ-
ных чисел. Но последнее по отношении к 2-адической метрике является всю-
ду плотным подмножеством в компактном пространстве Z2 всех целых 2-
адических чисел. Примечательное заключается в том, что соответствующие
продолжения вышеупомянутых операций являются непрерывными (а значит,
равномерно непрерывными) функциями на Z2.

Такой подход позволяет установить соответствия между «дискретны-
ми» и «непрерывными» свойствами некоторых классов функций. Например,
с этой точкой зрения функции, известные в теории автоматов как детермини-
рованные оказываются в точности теми функциями, которые удовлетворяют
условию Липшеца с коэффициентом 1. также соответствие между биектив-
ными функциями на кольцу вычетов Z/2n и 2-адическими функциями, сохра-
няющими меру Хаара; между последовательностями максимального периода,
порожденного конгруэнтными генераторами и равномерно распределенными
последовательностями целых 2-адических чисел; между конгруэнтными гене-
раторами максимального периоа и эргодическими относительно меры Хаара
функциями.

Похоже, эти соотвествия не являются чем-то внешним, а демонстри-
руют неархимедову сущность компьютерных операций. Список команд про-
цессора (или значительную его часть) обычо едается рассмотреть как множе-
ство равномерных 2-адических функций и, доказав средствами неархимедова
анализа некоторое утверждение относительно определенной композиции этих
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функций, тем самым получить утверждение относительно соответствующей
компьютерной программы. В данной работе этот подход демонстрируется на
примере программ - датчиков случайных чисел.

Упомянутые задачи изучаются в работе для произвольного простого
p, однако в связи с ограничениями объема приведены доказательства лишь
части результатов, в первую очередь относящихся к случаю p = 2, котороый
наиболее важен для приложений, а с точки зрения техники доказательств
стоит несколько особняком.

Определение 4.1. Пусть S и T - пространства с мерами µ и τ соот-
ветственно, f:S→ T - измеримая функция (т.е. каждое множеств f−1 (U)µ-
измеримо при τ -измеримом U ⊆ T). Функцию f назовем пропорциональ-
ной, если для любых двух τ -измеримых можеств U, V ⊆ T выполняется
µ(f−1(U)) = µ(f−1(V )) как только τ (U) = τ (V). Если µτ - вероятностные
меры (например, меры Хаара), то пропорциональная функция называется
равновероятной. В случае, когда S=T и µ(U) для каждого измеримого мно-
жества U. Наконец, если f сохраняют меру и f−1(U), говорим, что f эргодична.

Пропорциональные, сохраняющие меру и эргодические отображения,
представляют собой полезные инструменты для конструирования равномер-
но распределенных последовательностей на топологических группах. Имен-
но, справедливо следующее

Предложение 4.2. Пусть S и T - компактные топологические группы, f:
S→ T - непрерывная, измеримая относительно меры Хаара функция. Если
{an}∞n=0 - равномерно распределенная последовательность над S, а f - пропор-
циональная функция, то последовательность {f(an)}∞n=0 равномерно распре-
делена. Если, сверх того, f эргодична, то {fn(a)}∞n=0 равномерно распределена
для почти всех a ∈ S (по определению, fn(a) = f(fn−1(a)), f 0(a) = a.

Пусть A - компактная топологическая группа. В первую очередь
нас интересуют равномерно распределенные последовательности целых p-
адических чисел, т.е. случай, когда A изоморфна аддитивной группе кольца
целых p-адических чисел Zp. Общее опрееление равномерно распределеннойй
последовательности над A в данном случае принимает следующий вид.
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Определение 4.3. Последовательность {an}∞n=0 называется равномерно
распределенной над Zp, если

lim
N→∞

νNa+pkZp

N
= p−k

для всех k = 1,2,. . . , a ∈ Zp. (Здесь νN(U) - число тех a0, . . . , aN , которые
лежат в U).

Если вышеприведенное равенство выполняется лишь для некоторого
k = k0 говорим, что последовательность {an}∞n=0 равномерно распределена
по модулю pk0.

В соответствующем определении n-мерной равномерно распределенной
последовательности {an ∈ Z(n)

p }∞n=0 вышеприведенное равенство меняется на

lim
N→∞

νNa+pkZ
(n)
p

N
= p−kn.

Далее, пусть функция f удовлетворяет условию Липшеца с коэффици-
ентом 1: ||f(a) − f(b)||p ≤ ||a − b||p для всех a, b ∈ Zp, где || · ||p есть p-
адическая норма. Последнее условие, очевидно, эквивалентно системе вклю-
чений f(a + pkZp) ⊆ f(a) + pkZp для всех открытых шаров a + pkZp в Zp.
В алгебре функция g : A → A называется консервативной, если для любой
когруэнции η универсальной алгебры A и каждой пары a, b ∈ A конгруэнт-
ных по модулю η элементов их образы относительно g также конгруэнтны по
модулю η. заметим, что каждая функция, индуцированная полиномом над
универсалной алгеброй A консервативна. Такие функции называются поли-
номиальными функциями над универсальной алгеброй A. Поскльку pkZp есть
идеал кольца Zp и все идеалы в Zp имеют такой вид, то сказанное означает,
что f консервативна, и наоборот. Аналогичное верно и для n-мерных (n>1)
функций, удовлетворяющих условию Липшеца с коэффициентом 1. Поэтому
везде далее для простоты употребляется термин «консервативная функция»
вместо «функция, удовлетворяющая условию Липшеца с коэффициентом 1».
Стоит отметить, что такие функции представляют самостоятельный интерес
для теории автоматов, где они известны под названием детерминированных.
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Предложение 4.4. Пусть A - конечная группа, η - ее конгруэнция,
F : A(n) → A(m) (где m ≤ n) - пропорциональная (соответственно, биек-
тивная, транзитивная) консервативная функция. Тогда F пропорциональна
(соответственно, биективна, транизитивна) по модулю η. Более того, если А
есть прямое произведение групп B и C, A = B × C, то F пропорциональ-
на на А, если и только если она пропорциональна и на B и на C (т.е. по
модулю каждой конгруэнции, соответствующей проектированию на прямой
сомножитель). Наконец, F : A→ A транзитивна тогда и только тогда, когда
она транзитивна и на B и на C, и порядки |B| и |C| взаимно просты.

Предложение 4.5. Функция f(x) = m + nx с рациональными целыми
коэффициентами m, n транзитивна на Z/pk тогда и только тогда, когда m и
p взаимно просты и либо n ≡ 1(modp), либо p=2, k>1 и n ≡ 1(mod4).

Рассмотрим некоторый специальный класс p-адических функций, тесно
связанных с равномерно дифференцируемыми функциями на Zp.

Определение 5.1. Функцию F = (f1, . . . , fm) : Z(n)p → Z
(m)
p назовем

дифференцируемой по модулю pk, в точке u = (u1, . . . , un) ∈ Z(n)
p , если най-

дутся положительное рационально целое число N и матрица F ′k(u) над Qp

размера n×m (которая называется матрицей Якоби по модулю pk функции
F в точке u) такие, что для каждого положительного целого K ≥ N и каждо-
го h = (h1, . . . , hn) ∈ Z(n)

p из системы неравенств ||h1||p ≤ p−K(i =, 1, 2, . . . , n)

следует, что

dmp (F (u+ h), F (u) + hF ′k(u)) ≤ p−k−K ,

где dmp есть метрика на Q(m)
p , индуцированная метрикой dp на Qp:

dmp (a, b) = max{d(ai, bi) : i = 1, 2, . . . ,m}

для всех a = (a1, a2, . . . , am), b = (b1, . . . , bm ∈ Q(m)
p . Напомним, что по опре-

делению d(u, v) = ||u− v||p для всех u, v ∈ Qp.
Предложение 5.2. Если функция F = (f1, . . . , fm) : Q

(n)
p → Q

(m)
p диффе-

ренцируема в точке u ∈ Q(n)
p , то она дифференцируема по модулю pk в этой

точке для всех k = 1, 2, . . . .
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Определение 5.3. Скажем, что функция F = (f1, . . . , fm) : Z
(n)
p → Z

(m)
p ,

дифференцируема по модулю pk во всех точках u ∈ Z(n)
p , имеет целочислен-

ные производные по модулю pk, если матрица F ′k(u) есть матрица над Zp.
Теорема 5.6. Если функция F = (f1, . . . , fm) : Z

(n)
p → Z

(m)
p равномерно

дифференцируема по модулю p и имеет целозначные производные по модулю
p во всех точках из Z(n)

p , то ее можно представить в виде

F (x1, . . . , xn) = P (x1, . . . , xn) + C(x1, . . . , xn),

где P есть периодическая функция с периодом pN1(F ), а C - консервативная
функция. Следовательно, F асимптотически консервативна, а C равномерно
дифференцируема по модулю p.

Доказательство. Рассмотрим p-адическое представление функции F:

F (x1, . . . , xn) =

( ∞∑
i=0

δi(fi(x1, . . . , xn)))p
i, . . . ,

∞∑
i=0

δi(fm(x1, . . . , xn)))p
i

)
,

и положим

P (x1, . . . , xn) =

(N1(F )−1∑
i=0

δ1(f1(x1, . . . , xn)))p
i, . . .

. . . ,

N1(F )−1∑
i=0

δ1(fm(x1, . . . , xn)))p
i

)
,

C(x1, . . . , xn)F (x1, . . . , xn)− P (x1, . . . , xn).

Для l ≥ N1(F ) и всех s1, . . . , sn ∈ Zp из определения следует, что

F (x1 + s1p
l, . . . , xn + snp

l) ≡ F (x1, . . . , xn) (mod pl), (3)

поскольку F ′1(x1, . . . , xn) есть матрица над Z/p и, следовательно,

(s1p
l, . . . , snp

l)F ′1(x1, . . . , xn) ≡ (0, . . . , 0) (mod pl).
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В частности, 3 означает, что F ассимптотически консервативна. Это в свою
очередь означает, что δi(fj(x1, . . . , xn)) зависит лишь от

δ0(x1), . . . , δ0(xn), . . . , δi(x1), . . . , δi(xn),

если i ≥ N1(F ) (т.е. периодична с периодом pi+1) и следовательно, C
консервативна. С другой стороны, из 3 следует, что если i < N1(F ), то
δi(fj(x1, . . . , xn)) не зависит от δr(xt) при r = N1(F ), N1(F ) + 1, . . . , t =

1, 2, . . . , n, ..δi(fj(x1, . . . , xn)) периодична с периодом pN1(F ) для i = 0, 1, . . . ,

N1(F ) − 1, j = 1, 2, . . . ,m. Значит функция P (x1, . . . , xn) также имеет пери-
од pN1(F ). Поскольку P (x1, . . . , xn) как периодическая функция с примарным
по p периодом есть псевдоконстанта (либо константа), то соответствующие
произовдные по модулю p у функций C и F совпадают, т.е. C равномерно
дифференцируема по модулю p.
Заключение. В представленной бакалаврской работе были изучены и рас-
смотрены p-адические числа с соответствующей метрикой, поле p-адических
чисел, а также функции класса Липшеца и дифференцирование в поле p-
адических чисел по модулю pk.

На языке C++ изучен генератор равномерно распределенной последо-
вательности и представлен программный код его реализации в приложении
A.
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