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Введение. Потребности архитекторов, дизайнеров и инженеров-
проектировщиков в инновационном формообразовании ставят вопрос о
движении в архитектуре. Стационарная архитектура не в состоянии ре-
агировать на факторы окружающей среды. Средства вычислительного
проектирования помогли установить связь между параметрическим и
имитационным моделированием, что позволило анализировать поведение
сооружения в течение времени. Архитекторы могут оценить поведение
объекта, будь то здание, город, ландшафт или инфраструктура. Открыва-
ется новый подход в архитектуре, основанный на динамическом развитии
формообразования.

Широкое применение получили поверхности вращения и пологие оболоч-
ки переноса, гиперболоид, как формообразующая покрытия большепролет-
ных сооружений. Зонтичные поверхности и линейчатые поверхности раз-
личной гауссовой кривизны не часто применяются в архитектуре. Поиски
оптимального соотношения прочности и затраченного материала привело к
использованию, в частности, поверхностей постоянной средней кривизны -
минимальных поверхностей. Минимальная поверхность, у которой средняя
кривизна равна нулю во всех точках, идеальна для тонкостенных конструк-
ций. Если затрагивать вопросы экономичности и экологии объекта, то дан-
ные поверхности позволяют создать тонкостенные оболочки, требующие ми-
нимальных затрат материала. Физической моделью минимальных поверхно-
стей являются «мыльные пленки», возникающие на замкнутых проволочных
контурах после их извлечения из мыльной воды.

Цель бакалаврской работы - построение поверхностей постоянной средней
кривизны.

Для достижения цели поставлены следующие задачи:
• изучить основные понятия теории поверхностей (способы задания по-
верхности, классификация точек поверхности, параметризация поверх-
ности, геометрический смысл коэффициентов первой квадратичной);
• изучить построение поверхностей постоянной средней кривизны из
поверхностей вращения постоянной положительной гауссовой кривиз-
ны;
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• визуализировать поверхности постоянной средней кривизны в
Wolfram Mathematica.

Работа состоит из введения, трех разделов, заключения, списка исполь-
зованных источников. Во введении описана актуальность работы, сформули-
рована цель и поставлены задачи работы. В первом разделе даны основные
понятия теории поверхностей. Во втором разделе определяются минималь-
ные поверхности. В третьем разделе для поверхностей вращения постоянной
положительной гауссовой кривизны строятся поверхности постоянной сред-
ней кривизны. C использованием Wolfram Mathematica строятся рассматри-
ваемые поверхности.
Основное содержание работы. Введем следующее определение:

Определение 1.1. Гладкой поверхностью называется взаимно однозначное
дифференцируемое отображение r : U → R3, где U - открытое множество в
R2 с координатами (u, v), причем[

∂r
∂u ,

∂r
∂v

]
̸= 0 в U . (1.1)

Отображение r : U → R3 называется параметризацией поверхности. При
выполнении условия (1) параметризация называется регулярной. Регулярная
параметризация определяет гладкую поверхность. Значения u и v полностью
определяют точку. Параметры u и v называются внутренними координатами
точки на поверхности. Если точка имеет координаты x, y, z, то при изменении
u и v координаты тоже будут меняться:

x = x(u, v), y = y(u, v), z = z(u, v). (1.2)

Соотношения (2) называются уравнениями параметризованной поверхно-
сти, а x(u, v), y(u, v), z(u, v) - ее координатными функциями. Равенства (2)
определяют в области U вектор-функцию r(u, v) двух переменных. Предел,
непрерывность и алгебраические операции над такими функциями опреде-
лены так же, как и для вектор-функции одного переменного. Частные про-
изводные вектор-функции r(u, v) обозначаются путем добавления нижних
индексов, соответствующих переменным, по которым проводится дифферен-
цирование: ru(u, v), rv(u, v).
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Предложение 1.1. Пусть r(u, v) регулярная параметризация поверхности.
Чтобы параметризация r1(ξ, η), полученная заменой внутренних координат
u = ϕ(ξ, η), v = ψ(ξ, η), была регулярной, необходимо и достаточно, чтобы
функции ϕ(ξ, η), ψ(ξ, η) были дифференцируемы и якобиан

∂(ϕ,ψ)
∂(ξ,η) =ϕξψη − ψξϕη ̸= 0.

Доказательство. Используя формулу дифференцирования сложной функ-
ции, получим

[r1ξ(ξ, η), r1η(ξ, η)]=[ruϕξ+ rvψξ, ruϕη+ rvϕη]=[ru(u, v), rv(u, v)](ϕξψη−ψξϕη),

откуда непосредственно вытекает доказываемое утверждение.

Произвольная точка P гладкой поверхности называется точкой эллипти-
ческого типа, если гауссова кривизна в этой точке K > 0; точкой гиперболи-
ческого типа, если K < 0; точкой параболического типа, если K = 0.

Примерами поверхности, у которой все точки эллиптического типа, явля-
ются эллипсоид, двуполостной гиперболоид, эллиптический параболоид.

Точка эллиптического типа называется точкой закругления или омбили-
ческой, если в ней главные кривизны равны. Следовательно, омбилические
точки определяются уравнением

L
E = M

F = N
G , (1.3)

где E,F,G и L,M,N - коэффициенты первой и второй квадратичных форм
соответственно.

Поверхность, состоящая из точек закругления, является сферой.
В точке гиперболического типа нормальные кривизны нормальных сече-

ний имеют разные знаки. Поверхность в некоторой окрестности точки лежит
по разные стороны касательной плоскости. Примерами поверхности, у кото-
рой все точки гиперболического типа, являются однополостной гиперболоид,
гиперболический параболоид.

В каждой точке гиперболического типа имеются два направления, назы-
ваемые асимптотическими, для которых нормальная кривизна поверхности
равна нулю. Асимптотические направления определяются обращением в нуль
второй квадратичной формы
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Lϕ
′2
1 + 2Mϕ

′

1ϕ
′

2 +Nϕ
′2
2 = 0.

Асимптотической называется кривая на поверхности, которая в каждой
точке имеет асимптотическое направление. Дифференциальное уравнение
асимптотических линий получим, выполнив замену du = ϕ

′

1dt, dv = ϕ
′

2dt:

Ldu2 + 2Mdudv +Ndv2 = 0.

В окрестности точки параболического типа ничего определенного о рас-
положении поверхности относительно касательной плоскости заранее сказать
нельзя. Примерами поверхности, у которой все точки параболического типа,
являются конусы, цилиндры.

В каждой точке параболического типа одно из главных направлений
является асимптотическим. Точка параболического типа, в которой все
направления являются асимптотическими, называются точками уплощения.
В точках уплощения гауссова и средняя кривизны одновременно обраща-
ются в нуль. Поверхность, состоящая из точек уплощения, является частью
плоскости.

Длина координатной линии u = t, v = v0, t ∈ [t0, t1] на гладкой поверхно-
сти с параметризацией r : U → R3 задана следующей формулой:

S =
∫ t1
t0

√
E(t, v0)dt

С другой стороны, на карте поверхности длина этой кривой

σ =
∫ t1
t0

√
u′2 + v′2dt = t1 − t0.

Применяя к интегралу теорему о среднем, найдем

S = lim
σ→0

S
σ =

√
E(t0, v0).

Таким образом,
√
E равен отношению малых дуг координатных линий

v = v0 на поверхности и в области U , т.е. задает масштаб карты поверх-
ности вдоль этих координатных линий. Аналогично найдем, что

√
G задает

масштаб карты поверхности вдоль других координатных линий u = u0.
Для коэффициента F имеем
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F = (ru, rv) = |ru||rv| cosα,

где α - угол между векторами ru и rv. Отсюда

cosα = F√
EG

.

Коэффициент F определяет угол между координатными линиями на по-
верхности.

Предложение 1.2. Чтобы координатные линии в каждой точке поверхно-
сти были ортогональны, необходимо и достаточно, чтобы F = 0.

Выясним смысл определителя матрицы первой квадратичной формы
detG = EG− F 2. Имеем

|ru × rv|2 = |ru|2 · |rv|2 · sin2α = |ru|2 · |rv|2 − |ru|2 · |rv|2 · cos2α = EG− F 2.

По геометрическому смыслу модуля векторного произведения определи-
тель detG равен квадрату площади параллелограмма, построенного на базис-
ных векторах ru и rv.

На поверхности внутренние координаты можно ввести многими способа-
ми. Целесообразно выбирать их так, чтобы упростить коэффициенты первой
квадратичной формы. Можно ввести на поверхности координаты так, чтобы
E(u, v) = 1, F (u, v) = 0, G(u, v) > 0. Такая система называется полугеодези-
ческой.

При изотермических координатах E(u, v) = G(u, v), F (u, v) = 0. Как сле-
дует из уравнения

cosα = Eϕ′1ψ
′
1+F (ϕ

′
1ψ

′
2+ϕ

′
2ψ

′
1)+Gϕ

′
2ψ

′
2√

Eϕ
′2
1 +2Fϕ′1ϕ

′
2+Gϕ

′2
2 ·
√
Eψ

′2
1 +2Fψ′

1ψ
′
2+Gψ

′2
2

,

в этих координатах углы между линиями на поверхности и их изображениями
на карте сохраняются. Эти координаты применяются в штурманских картах
для прокладки курсов воздушных и морских судов.

Наконец, в чебышевских координатах E(u, v) = G(u, v) = 1, а F (u, v)

совпадает с косинусом угла между координатными линиями. Длины коор-
динатных линий на поверхности и на карте сохраняются. Эти координаты
применяются в задачах, связанных с раскроем ткани, листового металла.
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Определение 1.2. Параметризация гладкой поверхности называется по-
лугеодезической, если все координатные линии одного семейства являются
геодезическими и в каждой точке поверхности координатные линии ортого-
нальны.

Предложение 1.3. Всякая параметризация, удовлетворяющая условию
E = 1, F = 0, является полугеодезической.

Доказательство. Согласно предложению 2 при F = 0 координатная сетка
ортогональна.

По формулам

Γ1
11 =

Eu

2E ,Γ
1
12 =

Ev

2E ,Γ
1
22 = −Gu

2E ,
Γ2
11 = −Ev

2G ,Γ
2
12 =

Gu

2G ,Γ
2
22 =

Gv

2G

при E = 1 имеем Γ1
11 = Γ1

12 = Γ2
11 = 0.

При данной параметризации уравнения геодезической
ü1 + Γ1

11(u̇
1)2 + 2Γ1

12u̇
1u̇2 + Γ1

22(u̇
2)2 = 0,

ü2 + Γ2
11(u̇

1)2 + 2Γ2
12u̇

1u̇2 + Γ2
22(u̇

2)2 = 0,

g11(u̇
1)2 + 2g12u̇

1u̇2 + g22(u̇
2)2 = 1

принимают вид
ü+ Γ1

22v̇
2 = 0,

v̈ + 2Γ2
12u̇v̇ + Γ2

22v̇
2 = 0,

u̇2 +Gv̇2 = 1.

Любая координатная линия v = v0 является решением этой системы, при-
чем u̇ = 1. Это означает, что u совпадает с длиной дуги геодезической v = v0

с точностью до константы.
Способ построения полугеодезической параметризации следует из ее опре-

деления. Пусть гладкая поверхность задана уравнением r = r(u, v), а L -
произвольная линия на поверхности с внутренним уравнением

u = ϕ1(t), v = ϕ2(t), t ∈ [a, b].
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Параметризация кривой L определяется вектор-функцией

r1(t) = r(ϕ1(t), ϕ2(t)).

Через каждую точку P кривой L проходит геодезическая C(t), ортогональ-
ная L. Будем считать ее ориентированной таким образом, что касательные
векторы кривых C(t), L и вектор нормали к поверхности образуют правую
твойку. Введем на кривой C(t) естественную параметризацию t(t)(s), в ко-
торой длина дуги кривой C(t) отсчитывается от L, так что r(t)(0) = rl(t).
Тогда в некоторой окрестности отрезка [a, b], определена вектор-функция
r(s, t) = r(t)(s). Сама кривая L задается уравнением s = 0, а геодезическая
C(t0) - уравнением t = t0.

Чтобы убедиться, что r(s, t) - полугеодезическая параметризация, оста-
лось проверить ортогональность координатных линий в каждой точке, т.е.
равенство F = 0. Очевидно, что

rs(s, t) = ṙ(t)(s), rss(s, t) = r̈(t)(s),

причем r̈(t)(s) как вектор кривизны геодезической C(t) направлен по нормали
к поверхности. Имеем

E(s, t) = (rs, rs) = (ṙ(t)(s), ṙ(t)(s)) = 1, F (s, t) = (rs, rt).

Из построения линий C(t) следует, что F (0, t) = 0 на линии L. Вычислим
производную:

Fs(s, t) = (rs, rs)
′ = (rss, rt) + (rs, rts) = (rss, rt) + 1

2(rs, rs)
′

t =

(r̈(t)(s), rt(s, t)) +
1
2Et = 0.

Итак, коэффициент F не зависит от s. Значит, F (s, t) = F (0, t) и постро-
енная параметризация является полугеодезической.

Определение 2.1. Минимальной называется поверхность, у которой в каж-
дой точке средняя кривизна равна нулю.

Примерами таких поверхностей могут служить мыльные пузыри (раз-
ность давлений отлична от нуля, средняя кривизна постоянна и отлична
от нуля) и мыльные пленки, затягивающие проволочные контуры (давления
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одинаковы, средняя кривизна равна нулю). Мыльные пленки впервые были
подробно изучены Жозефом Плато.

Самыми известными минимальными поверхностями стали геликоид и ка-
теноид.

Пусть M - гладкая поверхность в евклидовом пространстве E3, n - еди-
ничный вектор нормали. Определен оператор A : ∂Xn = −AX. Собственные
значения k1, k2 оператора A называются главными кривизнами поверхности,
полусумма их H = k1+k2

2 есть средняя кривизна, а произведение K = k1k2 -
гауссова кривизна поверхности.

Имеет место теорема Пуассона-Лапласа:
Теорема 3.1. Предположим, что двумерная гладкая поверхность M в E3

является границей раздела двух однородных сред, находящихся в равновесии.
Пусть P1, P2 - давление в средах. Тогда средняя кривизна H по поверхности
M постоянна и равна H = h(P1 − P2), где постоянная λ = 1

h называется
коэффициентом поверхостного натяжения.

Поверхности, для которых H = const, называются поверхностями посто-
янной средней кривизны(ПСК).

Отрицательный ответ на проблему Хопфа: Существуют ли компактные
поверхности ПСК, отличные от сферы, дана следующая формулировка тео-
ремы Хопфа:

Теорема 3.2 Единственная поверхность ПСК при H = 1
2 , топологически

эквивалентная сфере, - это стандартная сфера радиуса 2.
Пусть r = r(u, v) - уравнение поверхности M , n - орт нормали, h = const.

Уравнение параллельной поверхности r̄ имеет вид

r̄ = r + hn. (3.1)

Обозначим через K,H, K̄, H̄ - гауссовы и средние кривизны поверхностей
M, M̄ , соответственно. Имеем

K̄ = K
1−2hH+h2K , H̄ = H−hK

1−2hH+h2K . (3.2)

Положим в (5)

1−Kh2 = 0, h = ± 1√
K

.
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Тогда

H̄ = ±
√
K
2 .

Этот результат дает возможность построения поверхностей постоянной
средней кривизны по поверхностям постоянной гауссовой кривизны.

В евклидовом пространстве E3 рассмотрим поверхность вращения M ,
полученную вращением плоской кривой вокруг оси. Обозначим через k =

(0, 0, 1) - орт оси, а через e = (cos(v), sin(v), 0) - радиус-вектор единичной
окружности, расположенной в плоскости, ортогональной оси.

Тогда поверхность M можно задать в виде

r = ue(v) + f(u)k, (3.3)

где f = f(u) - дифференцируемая функция, u, v -параметры.
Обозначим через n - орт нормали к поверхности M . Тогда

n = f(u)′e(v)−k√
(f(u)′)2+1

. (3.4)

Главные кривизны k1, k2 поверхности M имеют вид

k1 = − f(u)′

u
√

(f(u)′)2+1
,k2 = − f(u)′′√

(f(u)′)2+1
3 . (3.5)

Имеем дифференциальное уравнение

f(u)′

u
√

(f(u)′)2+1

f(u)′′√
(f(u)′)2+1

3 = K. (3.6)

Получим решения

f(u) = ±
u∫
0

√
Kt2−(c−1)
c−Kt2 dt, c = const. (3.7)

Имеем

f(u) = ±I
√
c−1EllipticE(u

√
Kc
c ,

√
(c−1)c

c−1 )√
K

+ c1, c, c1 = const. (3.8)
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Для определенности, полагаем K = 1.
Имеем

f(u) = ±
u∫
0

√
t2−(c−1)
c−t2 dt+ c1, c, c1 = const,

f(u) = ±I
√
c− 1EllipticE( u√

c
,

√
(c−1)c

c−1 ) + c1.

Полагая c = 1/2, получим

f(u) = ±
√
2
2 EllipticE(u

√
2, I) + c1. (3.9)

Далее приведем построение таких поверхностей постоянной средней кри-
визны, как геликоид и катеноид, в программе Wolfram Mathematica:

Рисунок 1 — Геликоид и катеноид.

Заключение. Современные тренды параметрической архитектуры отводят
нас от использования статических поверхностей, выдвигая на первое место
динамику. Открывается новый подход в архитектуре, основанный на динами-
ческом развитии формообразования. Стремление выработать наиболее опти-
мальное соотношение прочности и затраченного материала подводит к оценке
перспектив использования, в частности, минимальных поверхностей. Поэто-
му изучение поверхностей постоянной средней кривизны является актуаль-
ной задачей.
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