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Введение. Теория однолистных функций является одной из центральных
тем исследования в теории конформных отображений. Наиболее актуальные
задачи в классах однолистных функций формулируются как экстремальные
задачи об областях значений непрерывных функционалов или сводится к
ним. К этим задачам относится также проблема коэффициентов, заключа-
ющаяся в описании множества значений системы: Vn = a2, a3, ..., an. Одним
из многочисленных методов решения экстремальных задач для однолистных
функций, является метод оптимального управления. Этот метод, разработан-
ный в рамках параметрического метода и основанный на применение прин-
ципа максимума Л.С. Понтрягина, в теории однолистных функций впервые
был применен в работах И.А. Александрова и В.И. Попова. в дальнейшем
теория оптимального управления успешно применялась Д.В. Прохоровым и
его учениками.

В выпускной работе рассматривается краткое изложение теории Лёвнера
для единичного круга, формулируется принцип максимума Понтрягина, ко-
торый затем применяется к решению экстремальной задачи об оценке коэф-
фициентного функционала I(f) = a3−αa22, α ∈ R в классе SM

R ограниченных
однолистных функций с вещественными коэффициентами.

Цели работы:
- Изучить основы теории Лёвнера для однолистных в единичном круге

функций;
- Познакомиться с применением методов теории оптимального управле-

ния, а именно, принципа максимума Понтрягина, к решению экстре-
мальных задач в классах однолистных функций;

- Рассмотреть решение задач с применением изученных методов.
Основное содержание работы. Зафиксируем область ∆ с разрезом L не
проходящим через O(O ∈ ∆).
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Рассмотрим Lα′ = {ω : ω = ϕ(α), α
′ ≤ α ≤ α0} и семейство областей

Лёвнера ∆α = ∆\Lα при 0 ≤ α ≤ α0.
Рассмотрим семейство соответствующих ∆α аналитических функций.

Пусть выполняются дополнительные условия: ω = ψ(z, α) однолистно отоб-
ражают {|z| < 1} → ∆α. Причём, ψ(0, α) = 0, ψ

′

z(0, α) > 0.
И рассмотрим обратные к ним F (ω, α) = ψ−1(z, α), которые однолистно

отображают ∆α → {|z| < 1}, F (0, α) = 0, F ′

ω(0, α) > 0.
Справедливы следующие утверждения:

Теорема 1:
Функция F (ω, t) удовлетворяет дифференциальному уравнению Лёвнера

dF (ω, t)

dt
= −F (ω, t)1 + e−iµF (ω,t)

1− e−iµF (ω,t)

Теорема 2:
Функция ψ(z, t) удовлетворяет уравнению Лёвнера в частных производ-

ных
∂ψ(z, t)

∂z
= z ∗ ∂ψ(z, t)

∂z
∗ e

iµ + z

eiµ − z
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Оптимальное управление — это задача проектирования системы, обеспе-
чивающей для заданного объекта управления или процесса закон управления
или управляющую последовательность воздействий, обеспечивающих макси-
мум или минимум заданной совокупности критериев качества системы.

Пусть (u(t), x(t)) - оптимальный (по быстродействию) процесс, переводя-
щий объект из фазового состояния x0 в состояние x1 за время t0 ≤ t ≤ t1.
Построим для этого процесса множество K, которое является выпуклым ко-
нусом с вершиной в точке Q = x1; так как процесс (u(t), x(t)) оптимален, то
этот конус K не совпадает со всем фазовым пространством . Следовательно,
существует такой отличный от нуля вектор n, что для любой точки P конуса
K выполенено соотношение

n ·QP ≤ 0

Но точка P тогда и только тогда принадлежит конусу K, когда QP явля-
ется вектором смещения. Таким образом, вектор n обладает тем свойством,
что скалярное произведение его на любой вектор вида

−f(x(t1), u(t1))δt+
s∑

i=1

li∆(τi, hi) (1)

неположительно. В частности,

n · (−f(x(t1), u(t1))) ≤ 0

это получается, если в формуле (1) положить s = 0, δt = 1, то есть

n · f(x(t1), u(t1)) ≥ 0. (2)

Далее,
n ·∆(τ, h) ≤ 0, (3)

где τ - любая точка непрерывности уравнения u(t), а вектор h имеет вид

h = f(x(τ), υ)− f(x(τ), u(τ)), υ ∈ U (4)

(это получается, если в формуле (1) положить δt = 0, s = 1, l = 1. Заметим
теперь, что неравенство (3) имеет место и в том случае, если τ - любая точка
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разрыва управления u(t). В самом деле, пусть τ0 - точка разрыва управления
u(t). Так как допустимое управление u(t) непрерывно справа, то u(t) непре-
рывно на отрезке τ0 ≤ τ ≤ τ0 + θ (где θ - достаточно малое положительное
число), а потому и вектор h непрерывно зависит от τ при τ0 ≤ τ ≤ τ0 + θ.
Из этого следует, что и ∆(τ, h) непрерывно зависит от τ при τ0 ≤ τ ≤ τ0 + θ.
При этом для любого τ , удовлетворяющего неравенствам - τ0 ≤ τ ≤ τ0 + θ,
соотношение (3) имеет место (ибо все эти τ являются точками непрерывности
управления u(t)). Переходя в (3) к пределу при τ → τ0 + 0 (то есть τ → τ0,
τ > τ0), мы получаем (в силу непрерывности функции ∆(τ, h) на отрезке
τ0 ≤ τ ≤ τ0 + θ

n ·∆(τ0, h) ≤ 0, где h = f(x(τ0), υ)− f(x(τ0), u(τ0)).

Итак, мы установили, что существует вектор n, удовлетворяющий усло-
виям (2) и (3), где τ - произвольная точка отрезка t0 ≤ t ≤ t1, на котором
задано управление u(t), a h - вектор, определяемый формулой (3). Обозначим
теперь через δx(t) решение системы с начальным условием

δx(τ) = h (5)

и будем это решение рассматривать на отрезке τ ≤ t ≤ t1. Тогда по
определению

∆(τ, h) = δx(t1),

так что соотношение (2) принимает вид

nδx(t1) ≤ 0. (6)

Вектор n можно представить в виде Ψ(t1), где Ψ(t) - некоторое ре-
шение системы (4). Это мы и сделаем. Именно, обозначим через Ψ(t) =

(Ψ1(t), ...,Ψn(t)) решение линейной системы (4) с начальным (или, лучше бы-
ло бы сказать, «конечным») условием

Ψ(t1) = n (7)
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В силу линейности системы (4) решение Ψ(t) определено на всем отрезке
t0 ≤ t ≤ t1 ( на котором заданы функции u(t) и x(t), входящие в правые
части системы (4)). Скалярное произведение постоянно; в частности,

Ψ(t)δx(t1)

и потому

Ψ(τ)δx(τ) ≤ 0

Это соотношение можно записать в виде Ψ(τ)h ≤ 0, что в силу (4) дает нам

Ψ(τ){f(x(τ), υ)− f(x(τ), u(τ))} ≤ 0

или, наконец,

Ψ(τ)f(x(τ), υ) ≤ Ψ(τ)f(x(τ), u(τ)), υ ∈ U (8)

Заметим еще, что в силу (7) соотношение (4) переписывается в виде

Ψ(t1)f(x(t1), u(t1)) ≥ 0 (9)

Итак, мы пришли к следуюзему выводу.
Принцип максимума Понтрягина. Рассматривается управляемый объект,
движение которого описывается системой уравнений

ẋi = f i(x1, ..., xn, u1, ..., ur) = f i(x, u), i = 1, ..., n

или, в векторной форме,
ẋ = f(x, u). (10)

В пространстве переменных u1, ..., ur задано некоторое множество U

(область управления); допустимым управлением считается произвольная
кусочно-непрерывная функция u(t) = (u1(t), ..., ur(t)) со значениями в U ,
непрерывная справа в точках разрыва и непрерывная в концах отрезка,
на котором она определена. Далее, в фазовом пространстве X переменных
x1, ..., xn заданы две точки x0 и x1 (начальное и конечное фазовые состояния).
Наконец, рассматривается некоторый процесс (u(t), x(t)), t0 ≤ t ≤ t1, пере-
водящий объект из состояния x0 в состояние x1; это означает, что x(t) есть
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решение системы (10), соответствующее допустимому управлению u = u(t) и
удовлетворяющее начальному и конечному условиям

x(t0) = x0, x(t1) = x1

Таким образом, рассматриваемый процесс затрачивает на переход из состоя-
ния x0 в x1 время, равное t1−t0. Процесс (u(t), x(t)) называется оптимальным
(в смысле быстродействия), если не существует процесса, переводящего объ-
ект из состояния x0 в состояние x1 за меньшее время.

В данной главе рассматривается работа Gordienko V. G., Prokhorov D.
V. ”Optimization in an problem for bounded univalent function”, в которой с
помощью методов теории управления отыскивается точный экстремум для
функционала a3 − αa22 в классе SM

R голоморфных однолистных функций f ,
f(z) = z + a2z

2 + ..., |z| < 1, an ∈ R, n ≥ 2 удовлетворяющих неравенству
|f(z)| < M .

Пусть S - класс голоморфных и однолистных функций f, f(z) = z+a2z
2+

+ ..., в единичном круге E = {z : |z| < 1}; SM ,M > 1 - класс функций f ∈ S,
удовлетворяющих условию |f(z)| < M в E; SR - класс функций f ∈ S с
действительными коэффициентами an, n ≥ 2;SM

R = SR ∩ SM .
Функционал I(f) = a3 − αa22, a ∈ R, был исследован Z. Jakubowski, A.

Szwankowski. Максимум от |I(f)| был найден для классов S, SM , SR. Оценки
максимума от I(f) в классе SR и |I(f)| в классе S, совпадают, если α ≤ 1.
В данной работе отыскиваются точные верхняя и нижняя границы I(f) в
классе SM

R . В частности показано что оценки I(f) в классе SM
R и |I(f)| в

классе SM совпадают, если α ≤ 1. Главный результат следующая теорема:
Теорема:

Если f ∈ SM
R , тогда

I(f) ≤


(5−4α)
M2 − 8(1−α)

M + 3− 4α; α ≤ 1
1−M

2(β−1)2

M2 + 1− 1
M2 ; (1−M) ≤ α ≤ 1− 1

logM

1− 1
M2 ; α ≥ 1− 1

logM

где β ∈ (1,M) это единственный корень уравнения log β
M + α

(1−α) +
1
β = 0
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I(f) ≥

 1
M2 − 1; α ≤ 1

(5−4α)
M2 − 8(1−α)

M + 3− 4α; α ≥ 1

Все оценки точные.
Эта теорема - пример применения оптимизации к экстремальным задачам

для однолистных функций, разработанных одним из авторов, а конкретнее
Прохоровым Дмитрием Валентиновичем. Рассмотрим уравнение Лёвнера в
классе SM

R :
dw

dt
= −w 1− w2

1− uw + w2
, (11)

где w = z при t = 0;−2 ≤ u ≤ 2; t ≥ 0

Интегралы w(z, t) уравнения Лёвнера представляют собой всюду плотный
подкласс класса SM

R .
Пусть w(z, t) = e−t(z + a2(t)z

2 + ...) - интеграл от диффиренцируемо-
го уравнения Лёвнера (11). Для фиксированного α ∈ R мы обозначим
x1(t) = a2(t);x2(t) = a3(t)−αa22(t). Расширяя обе стороны (11) и приравнивая
коэффициенты при z2 и z3 получается следующее управление динамической
системы для x1(t) и x2(t)

dx1
dt

= −ue−t;x1(0) = 0

dx2
dt

= (α− 1)2x1ue
−t − (u2 − 2)e−2t;x2(0) = 0

(12)

Множество значений D = {(a2, I(f)) : f ∈ SM
R } является множеством

достижимости управляемой системы (12) в момент времени t = logM . Гра-
ничные точки множества D достигаются только оптимальным управлением
u, которое удовлетворяет принципу максимума Понтрягина, то есть оно мак-
симизирует функцию Гамильтона.

H(t, χ,Ψ, u) = −Ψ1ue
−t +Ψ2[2(α− 1)x1ue

−t − (u2 − 2)e−2t],

где вектор Ψ = (Ψ1,Ψ2) множителей Лагранжа удовлетворяющих сопряжён-
ной гамильтоновой системе:
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dΨ1

dt
= −∂H

∂x1
= −2(α− 1)ue−tΨ2; Ψ1(0) = c1

dΨ2

dt
= −∂H

∂x2
= 0;Ψ2(0) = c2.

(13)

Координаты вектора Ψ инвариантны относительно умножения Ψ на про-
извольное положительное число.

Вектор Ψ(logM) перпендикулярен границе ∂D множества D или к опор-
ной прямой для ∂D если она существует. Следовательно, Ψ может быть нор-
мирован так, что Ψ(logM) = (0, 1) в экстремальной точке A ∈ ∂D макси-
мизирующей I(f) или Ψ(logM) = (0,−1) в экстремальной точке B ∈ ∂D

минимизирующей I(f). Таким образом мы предполагаем, что c2 = 1 и отсю-
да Ψ2 = 1 в задаче на максимум I(f) или c2 = −1 и отсюда Ψ2 = −1 в задаче
на минимум I(f).

Из правых частей уравнений (12) и (13) мы получим, что

Ψ1(t) = 2(α− 1)x1(t)Ψ2 + c1. (14)

Заключение. В выпускной работе было рассмотрено краткое изложение тео-
рии Лёвнера для единичного круга, принцип максимума Понтрягина, кото-
рый был применён к решению экстремальной задачи об оценке коэффици-
ентного функционала I(f) = a3 − αa22, α ∈ R в классе SM

R ограниченных
однолистных функций с вещественными коэффициентами. Для детального
изучения этой темы, необходимо было рассмотреть следующие аспекты:

- Основы теории Лёвнера для однолистных в единичном круге функций;
- Применение методов теории оптимального управления, а именно, прин-

ципа максимума Понтрягина, к решению экстремальных задач в клас-
сах однолистных функций;

- Решение задач с применением изученных методов.
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