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Введение

Динамическое программирование - это вычислительный метод реше-

ния задач оптимального управления определенной структуры. Дина-

мическое программирование возникло и сформировалось в 1950-1953

гг. благодаря работам Р. Беллмана.

Динамическое программирование определяет оптимальное решение

в многомерной задаче оптимального управления путем ее декомпози-

ции на этапы, каждый из которых представляет подзадачу относитель-

но одной переменной.

3



1 Динамическое программирование

Опишем подход к вариационным задачам с помощью динамического

программирования.

Рассмотрим задачу минимизации функционала I(y) =
b∫
a

F (x, y, y′)dx,

где функция y подчинена граничному условию y(a) = c. Минималь-

ное значение будет функцией начального значения a, переменной x и

граничного значения c функции y. Здесь c измеряет начальное состо-

яние системы, а a определяет продолжительность процесса.

Введем теперь функцию f(a, c) = miny I(y)

Итак, мы включили предложенную выше частную задачу, где a и

c - постоянные, в семейство задач, возникающих, когда параметры a и

c меняются в областях −∞ < a < b и −∞ < c <∞.

Начнем с вывода уравнения для функции f(a, c), а затем покажем,

как это уравнение приводит к некоторым дальнейшим результатам.

В силу аддитивности интеграла
b∫
a

=
a+∆∫
a

+
b∫

a+∆

из принципа оптимальности немедленно получаем функциональное

уравнение f(a, c) = miny[a,a+∆][
a+∆∫
a

F (x, y, y′)dx+ f(a+ ∆, c(y))]

где минимизация производится по всем функциям y, определенным

на промежутке a ≤ x ≤ a + ∆ и удовлетворяющим условиям y(a) = c

и c(y) = y(a+ ∆).

Мы используем это соотношение двояким образом: в аналитических

рассуждениях - устремляя ∆ к 0, а при численных расчетах - взяв ∆

малым, но отличным от нуля.
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2 Уравнение Беллмана

Принцип Беллмана дает достаточные условия оптимальности процес-

са в задаче оптимального управления. Он базируется на следующем

ключевом факте:

Если кривая x∗(t) является оптимальной траекторией в задаче управ-

ления динамической системой на отрезке времени [t0, T ], с некоторым

начальным условием x(t0) = x0, то для любого момента времени τ ∈

[t0, T ] оптимальным решением задачи управления системой на отрез-

ке времени [τ, T ] с начальным условием x(τ) = x∗(τ) будет являться

участок той же самой траектории x∗(t).

Рассмотрим задачу оптимального управления в виде:

J(x(·), u(·)) =

∫ t1

t0

F (t, x(t), u(t))dt+ Φ0(t1, x(t1))→ max (2.1)

ẋ(t) = f(t, x(t), u(t)), x(t0) = x0 (2.2)

u(t) ∈ Ut (2.3)

и пусть J∗ - значение функционала на оптимальном ее решении x∗(t), u∗(t).

Теперь для произвольного момента времени τ ∈ [t0, T ] и произволь-

ной точки фазового пространства y положим в задаче (2.1) - (2.3) t0 =

τ, x(τ) = y. Функцию J∗(τ, y), равную значению функционала на опти-

мальном решении такой задачи, будем называть функцией Беллмана

или функцией выигрыша.

Отметим, что J∗ = J∗(t0, x0).

Исследуем теперь изменение функции J∗(t, x) с течением времени

вдоль оптимальной траектории системы, то есть, при x = x∗(t).

Рассмотрим малое приращение времени dt. За это время система
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перейдет в новое состояние

x∗(t+ dt) ≈ x∗(t) + dx∗(t),

где, из (2.2),

dx∗(t) = f(t, x∗(t), u∗(t))dt

Изменение значения функционала (2.1) на отрезке [t, t + dt], может

происходить только за счет интегральной его части и приближенно

составляет ∫ t+dt

t

F (t, x∗(t), u∗(t))dt ≈ F (t, x∗(t), u∗(t))dt,

а оставшаяся часть, согласно принципу оптимальности Беллмана, бу-

дет равна J∗(t + dt, x∗(t + dt)). Таким образом, получено следующее

рекуррентное соотношение:

J∗(t, x∗(t)) ≈ F (t, x∗(t), u∗(t))dt+ J∗(t+ dt, x∗(t+ dt)). (2.4)

Теперь, пользуясь оптимальностью u∗(t), можем переписать (2.4) сле-

дующим образом:

J∗(t, x(t)) ≈ max
u(t)∈Ut

{F (t, x(t), u(t))dt+ J∗(t+ dt, x(t+ dt))} (2.5)

Далее, в предположении дифференцируемости J∗(t, x) по своим аргу-

ментам, переходя к пределу при dt → 0 и учитывая (2.2), получим

следующее соотношение:

−∂J
∗(t, x)

∂t
= max

u(t)∈Ut

{F (t, x(t), u(t)) +
∂J∗(t, x)

∂x
f(t, x(t), u(t))} (2.6)

Соотношение (2.6) представляет собой дифференциальное уравнение

в частных производных первого порядка для определения функции

J∗(t, x). Оно называется уравнением Беллмана в дифференциальной форме.
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Краевым условием для данного уравнения является оптимальное

значение функционала при t = t1, равное терминальному члену:

J∗(t1, x(t1)) = Φ0(t1, x(t1)). (2.7)

Как правило, аналитическое решение уравнения (2.6) найти довольно

сложно или вовсе невозможно. Поэтому прибегают к дискретизации за-

дачи (2.1) - (2.3) с последующим ее численным решением. Дискретная

задача формулируется следующим образом:

J(x(·), u(·)) =
N−1∑
i=0

F (ti, xi, ui)∆ti + Φ0(xN)→ max (2.8)

xi+1 = f(xi, ui), x0 − задано (2.9)

ui ∈ Ui, (2.10)

Отметим, что в дискретной задаче состояние системы будет описы-

ваться вектором x = (x0, x1, . . . , xN) ∈ RN+1, а управление - вектором

u = (u0, u1, . . . , uN−1) ∈ RN .

Для (2.8) - (2.10) уравнение Беллмана будет иметь следующий вид:

J∗i (xi) = max
ui∈Ui

{F (ti, xi, ui)∆ti + J∗i+1(f(xi, ui))}, (2.11)

с краевым условием

J∗N(xN) = Φ0(xN)

Решение задачи (2.11) при заданных краевых условиях производит-

ся последовательным решением уравнения (2.11) для шагов i = N −

1, N − 2, . . . , 0 (обратный ход метода Беллмана). При этом на каждом

шаге получается оптимальное управление u∗i как функция от текущего

состояния системы xi.

7



На втором этапе по полученным функциям u∗i (xi) производится

синтез оптимального управления для задачи с конкретным началь-

ным условием x0.

Таким образом, метод динамического программирования, в отличие

от рассмотренных выше необходимых условий, дававших оптимальное

управление как функцию времени u∗(t)(программное управление), поз-

воляет определять оптимальное управление как функцию состояния

системы u∗(t, x)(синтезированное управление), что дает возможность

отыскивать решение сразу для целого класса задач с различными на-

чальными условиями.

Далее будем считать, что в функционал задачи время не входит яв-

но. Положим шаг ∆ti равным 1. Введем понятие горизонта планирования

как количества шагов, оставшихся до завершения управления. Обозна-

чим

Vk(x) = J∗N−k(x),

т. е. максимальный выигрыш, который можно получить за k шагов,

если начать из состояния x. В этом случае рекуррентное соотношение

для Vk(x) принимает вид:

Vk(x) = max
u∈U
{F (x, u) + Vk−1(f(x, u))}, (2.12)

с краевым условием: V0(x) = Φ0(x).
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3 Задача распределения ресурса

Имеется некоторый ресурс в объеме a > 0, который необходимо распре-

делить между N агентами, так, чтобы максимизировать их суммарную

полезность, если функция полезности i-го агента

Fi(ui) = lnui,

где ui - объем ресурса, получаемый i-м агентом. (Считаем, что аген-

ты как-то перенумерованы.) Решение. В формальной постановке зада-

ча имеет вид:

J(u) =
N∑
i=1

lnui → max; (3.1)

N∑
i=1

ui ≤ a; a > 0

Приведем ее к задаче оптимального управления. Для этого необхо-

димо выделить переменную, являющуюся аналогом времени (номера

шага) в задаче оптимального управления, горизонта планирования, а

также параметры состояния и управления в каждый момент времени.

Пусть номером шага в задаче является номер агента i, для кото-

рого принимается решение о распределении ресурса. Тогда величина

ui будет являться управлением на i-м шаге. Введем параметр состоя-

ния системы xi как объем ресурса, имеющийся к i-му шагу (i = 1, N).

Тогда, из условия задачи получаем

xi+1 = xi − ui; x1 = a. (3.2)

Так как может быть распределено ресурса не более, чем имеется в

наличии, то имеет место ограничение на управление

0 ≤ ui ≤ xi. (3.3)
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Таким образом, (3.1) - (3.3) представляет собой задачу оптимального

управления в дискретном времени. Решим ее с использованием прин-

ципа Беллмана. Обозначим через Vk(x) значение функции выигрыша,

когда горизонт планирования равен k, т. е. ресурс x распределяется

между k агентами (не важно, что последними, так как все агенты име-

ют одинаковые функции полезности).

Рассмотрим последний шаг в нашей задаче, который имеет место

после того, как ресурс полностью распределен между всеми агентами.

Согласно краевому условию функция Беллмана V0 на этом шаге равна

V0(x) = Φ0(x) ≡ 0

Рассмотрим теперь ситуацию, когда ресурс должен быть распре-

делен одному агенту. В этом случае горизонт планирования k = 1 и

рекуррентное соотношение (2.12) принимает вид

V1(x) = max
0≤u≤x

lnu+ V0(x− u) = max
0≤u≤x

lnu = lnx,

откуда u∗N(x) = x.

Аналогично, при горизонте планирования k = 2 имеем:

V2(x) = max
0≤u≤x

lnu+ V1(x− u) max
0≤u≤x

lnu+ ln(x− u).

Максимум выражения в фигурных скобках по u ∈ [0, x] достигается

при u∗(x) = x
2 .

Покажем далее, что для горизонта k = 0, . . . , N оптимальное управ-

ление на шаге (N + 1 - k) и функция Беллмана горизонта k имеют вид:

u∗N+1−k(x) = x
k , Vk = klnx

k Предположим, что это верно на некото-

ром шаге (N + 1 - k). Определим оптимальное управление и функцию

Беллмана горизонта k:

Vk+1(x) = max
0≤u≤x

lnu+ Vk(x− u) = max
0≤u≤x

lnu+ kln
x− u
k

.
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Обозначим

A(u) = lnu+ kln
x− u
k

.

Условия первого порядка максимума функции A(uN−k) имеют вид:

dA

du
=

1

u
− k

x− u
= 0,

откуда

u∗N−k(x) =
x

k + 1
, Vk+1(x) = (k + 1)ln

x

k + 1
.

Таким образом, определен общий вид оптимального управления

для произвольного шага в задаче. Теперь проведем синтез оптимально-

го управления для задачи с N агентами и начальным объемом ресурса,

равным a:

u∗1(x1) =
x1

N
=

a

N
; x2 = x1 − u∗1 = a− a

N
=
a(N − 1)

N
;

u∗2(x2) =
x2

N − 1
=

a

N
; x3 = x2 − u∗2 =

a(N − 1)

n
− a

N
=
a(N − 2)

N

. . .

u∗k(xk) =
xk

N + 1− k
=

a

N
; xk+1 = xk−u∗k =

a(N + 1− k)

N
− a

N
=
a(N − k)

N

. . .

Таким образом, в данной задаче оптимальным является равномер-

ное распределение ресурса между агентами:

u∗ = (
a

N
,
a

N
, . . . ,

a

N
).

11



Заключение

Метод динамического программирования позволяет найти оптималь-

ное решение в многошаговом процессе принятия решения. Применяет-

ся для решения задач оптимального управления определенной струк-

туры.

Преимущество подхода, при котором оптимальное решение в мно-

гомерной задаче путем ее декомпозиции на этапы, каждый из кото-

рых представляет подзадачу относительно одной переменной, состоит

в том, что вместо многомерной задачи на каждом этапе решаются од-

номерные оптимизационные задачи.
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