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Введение Одной из задач математической физики является задача

определения вида дифференциального оператора по некоторой совокупности

его собственных значений, известная, как обратная. Первые существенные ре-

зультаты в этой области (после основополагающей работы В.А.Амбарцумяна)

были получены Боргом, который доказал однозначность восстановления ве-

щественного потенциала оператораШтурма—Лиувилля по спектральным дан-

ным этого оператора, т. е. нулям двух характеристических функций.

Однако не менее важной, чем задача восстановления оператора по его

спектру, является задача получения устойчивости этого восстановления. Это

свойство, крайне важное для обоснования численных алгоритмов, имеет ло-

кальный характер, поскольку оно гарантирует, что небольшие погрешности

любых фиксированных входных данных, вызванные ошибками измерения,

могут привести только к небольшим погрешностям решения.

В рамках исследований этой области были получены результаты для бо-

лее «сильного», нежели описанный выше, типа устойчивости, относящегося

к равномерной устойчивости, которая предполагает произвольность входных

данных. В частности, подобные результаты были получены для потенциалов-

распределений из пространств Соболева. Впоследствии была получена рав-

номерная устойчивость обратных задач и для некоторых классов интегро-

дифференциальных операторов, причем использовался уже иной подход, ча-

стью которого стало доказательство равномерной устойчивости восстановле-

ния характеристической функции рассматриваемого оператора по ее нулям.

Более того, дальнейшее изучение этой темы привело к нахождению

более общего подкласса целых функций, для которого справедливо данное

обобщение. В качестве такого подкласса были рассмотрены всевозможные

произведения алгебраических многочленов и функций типа синуса с асимп-

тотически отделенными нулями, для которых, помимо равномерной устойчи-

вости восстановления, были также получены теоремы об асимптотике нулей

и об эквивалентном представлении этих целых функций в виде бесконечного

произведения. Эти результаты имеют практическое применение в исследова-

нии различных аспектов прямых и обратных задач, в том числе равномерной

устойчивости последних.

Целью данной работы является демонстрация описанных выше резуль-
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татов исследования равномерной устойчивости восстановления целых функ-

ций типа синуса по их нулям.

Основное содержание работы. Бакалаврская работа содержит вве-

дение, четыре раздела, заключение, список использованных источников и од-

но приложение.

В первом разделе рассмотрена равномерная устойчивость восстановле-

ния первообразных вещественных потенциалов из пространства Соболева в

качестве предварительного этапа работы.

Во втором разделе приведены результаты исследования равномерной

устойчивости восстановления целых функций типа синуса по их нулям.

В третьем разделе описанные результаты были применены к целым

функциям типа синуса при фиксированной функции 𝑆(𝑧); для этих функций

были выведены формулы восстановления по их нулям и проведено исследо-

вание равномерной устойчивости этого восстановления с описанием процесса.

В четвертом разделе приведены использованные в работе понятия и

факты.

Равномерная устойчивость восстановления первообразных ве-

щественных потенциалов из пространства Соболева. Оператор Дири-

хле определяется равенством:

𝐿𝐷𝑦 = 𝐿𝑦 = −(𝑦[1])′ − 𝜎(𝑥)𝑦[1] − 𝜎2(𝑥)𝑦,

его область определения имеет вид

D(𝐿𝐷) = {𝑦, 𝑦[1] ∈ 𝑊 1
1 [0, 𝜋] : 𝐿𝑦 ∈ 𝐿2[0, 𝜋], 𝑦(0) = 𝑦(𝜋) = 0}.

Оператор Дирихле—Неймана определяется аналогично: 𝐿𝐷𝑁𝑦 = 𝐿𝑦 на обла-

сти

D(𝐿𝐷𝑁) = {𝑦, 𝑦[1] ∈ 𝑊 1
1 [0, 𝜋] : 𝐿𝑦 ∈ 𝐿2[0, 𝜋], 𝑦(0) = 𝑦[1](𝜋) = 0}.

В задаче Борга потенциал восстанавливается по двум спектрам {𝜆𝑘} и {𝜇𝑘}
операторов 𝐿𝐷 и 𝐿𝐷𝑁 .

Для вещественных потенциалов спектры {𝜆𝑘} и {𝜇𝑘} операторов 𝐿𝐷 и
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𝐿𝐷𝑁 удовлетворяют условию перемежаемости

𝜇1 < 𝜆1 < 𝜇2 < 𝜆2 < . . . < 𝜇𝑛 < 𝜆𝑛 < 𝜇𝑛+1 < . . . . (1)

Теорема 1. При любом фиксированном 𝜃 > 0 отображение 𝐹 : Γ𝜃 → Ω𝜃

есть биекция.

Теорема 2. Отображение 𝐹 : 𝑊 𝜃
2,R → Ω̂𝜃 есть биекция. Последователь-

ности чисел {𝜇𝑘}∞1 и {𝜆𝑘}∞1 являются спектрами операторов 𝐿𝐷 и 𝐿𝐷𝑁 ,

если и только если они удовлетворяют условиям перемежаемости (1) и

{𝑠𝑘}∞1 ∈ 𝑙𝜃𝐵.

Теорема 3. Фиксируем 𝜃 > 0. Пусть последовательности y, y1 регуляризо-

ванных спектральных данных лежат в Ω𝜃(𝑟, ℎ). Тогда прообразы 𝜎 = 𝐹−1y,

𝜎1 = 𝐹−1y1 лежат в B𝜃
Γ(𝑅) и справедливы оценки

𝐶1‖y − y1‖𝜃 6 ‖𝜎 − 𝜎1‖𝜃 6 𝐶2‖y − y1‖𝜃,

где число 𝑅 и постоянные 𝐶1, 𝐶2 зависят только от 𝑟 и ℎ. Число 𝑅 и

постоянные 𝐶2, 𝐶
−1
1 увеличиваются при 𝑟 → ∞ или ℎ → 0. Обратно, если

𝜎, 𝜎1 лежат в шаре B𝜃
R(𝑅), то последовательности y, y1 регуляризованных

спектральных данных этих функций лежат в Ω𝜃(𝑟, ℎ) и справедливы оценки

𝐶1‖𝜎 − 𝜎1‖𝜃 6 ‖y − y1‖𝜃 6 𝐶2‖𝜎 − 𝜎1‖𝜃.

Здесь числа 𝑟 > 0, ℎ ∈
(︂

0,
1

2

)︂
и постоянные 𝐶1 и 𝐶2 зависят только от 𝑅.

Числа 𝑟, ℎ, 𝐶2 и 𝐶−1
1 увеличиваются при 𝑅 → ∞.

Равномерная устойчивость восстановления целых функций ти-

па синуса по их нулям. В первую очередь в рассмотрение следует ввести

целую функцию вида

𝜃(𝑧) = 𝑆(𝑧) +

𝑏∫︁
−𝑏

𝑤(𝑥)𝑒𝑖𝑧𝑥 𝑑𝑥, 𝑆(𝑧) = 𝑃𝑁(𝑧)𝑆0(𝑧), 𝑤(𝑥) ∈ 𝐿2(−𝑏, 𝑏), (2)
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где 𝑃𝑁(𝑧) — алгебраический многочлен степени 𝑁 , а 𝑆0(𝑧) — функция типа

синуса экспоненциального типа 𝑏, нули которой 𝑧0𝑛, 𝑛 ∈ N, асимптотически
отделены (inf |𝑧0𝑛 − 𝑧0𝑘| > 0 при 𝑛 ̸= 𝑘 и 𝑛, 𝑘 ≫ 1), при фиксированных

𝑁 ∈ N∪{0} и 𝑏 > 0. Согласно определению целой функции типа синуса (типа

𝑏), найдутся положительные константы 𝑐, 𝐶 и 𝐾, при которых выполняется

двусторонняя оценка

𝑐 < |𝑆0(𝑧)|𝑒−| Im 𝑧|𝑏 < 𝐶, | Im 𝑧| > 𝐾.

Согласно принципу Фрагмена—Линделёфа, верхняя оценка верна и для всех

𝑧 ∈ C. Кроме того, для 𝑆0(𝑧) справедлива следующая нижняя оценка:

|𝑆0(𝑧)| > 𝑐𝛿𝑒
| Im 𝑧|𝑏, dist(𝑧, {𝑧0𝑛}𝑛>1) > 𝛿 > 0, (3)

где 𝑐𝛿 > 0 зависит только от 𝛿. Следствием этих уточнений и принципа мак-

симума модуля является следующая оценка: найдутся такие 𝑁1 и 𝑁2, что

0 < 𝑁1 < |𝑆 ′
0(𝑧

0
𝑛)| < 𝑁2 < ∞, (4)

коль скоро 𝑧0𝑛 является простым нулем функции 𝑆0(𝑧).

К виду 𝑃𝑁(𝑧)𝑆0(𝑧) может быть приведена любая целая функция вида

𝑆(𝑧) =
𝑁∑︁
𝑗=0

𝑧𝑁−𝑗𝑠𝑗(𝑧), 𝑠𝑗(𝑧) = 𝑂(𝑒| Im 𝑧|𝑏), 𝑧 → ∞, 𝑗 = 0, 𝑁,

где 𝑠0(𝑧) — некоторая функция типа синуса с асимптотически отделенными

нулями.

Обозначим

𝜇𝑛 :=

⎧⎨⎩𝑧0𝑛, 𝑧0𝑛 ̸= 0,

−1, 𝑧0𝑛 = 0,
(5)

где {𝑧0𝑛}𝑛=1−𝑁,0 — нули многочлена 𝑃𝑁(𝑧).

Теорема 4. Всякая функция 𝜃(𝑧) вида (2) обладает бесконечным множе-
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ством нулей {𝑧𝑛}𝑛>1−𝑁 , которые, в свою очередь, имеют вид

𝑧𝑛 = 𝑧0𝑛 +
κ𝑛

𝜇𝑁
𝑛

, {κ𝑛} ∈ 𝑙2. (6)

Лемма 1. Для всякой ограниченной последовательности {𝛼𝑛}𝑛>1 имеет ме-

сто включение {𝑓(𝑧0𝑛+𝛼𝑛)}𝑛>1 ∈ 𝑙2, где {𝑧0𝑛}𝑛>1 — последовательность нулей

𝑆0(𝑧).

Теорема 5. При фиксированной 𝑆(𝑧) функция 𝜃(𝑧) однозначно определяется

заданием всех своих нулей за исключением любых 𝑁 штук, т. е. заданием

последовательности {𝑧𝑛}𝑛>1.

Кроме того, справедливо представление

𝜃(𝑧) = 𝛼𝑒𝛽𝑧
∞∏︁

𝑛=1−𝑁

𝑧𝑛 − 𝑧

𝜇𝑛
𝑒𝑧/𝜇𝑛, (7)

где 𝛽 = 𝑠 + 𝛾, а 𝑠 — кратность нуля 𝑆(𝑧) в точке ноль, и

𝛼 = lim
𝑧→0

𝑆(𝑧)

𝑧𝑠
, 𝛾 = lim

𝑧→0

𝑑

𝑑𝑧
ln

𝑆(𝑧)

𝑧𝑠
. (8)

Лемма 2. Пусть 𝑆0(𝑧) — некоторая функция типа синуса типа 𝑏 с асимп-

тотически отделенными нулями {𝑧0𝑛}𝑛>1, а {𝜅𝑛}𝑛>1 — произвольная после-

довательность из 𝑙2. Обозначим 𝑧𝑛 := 𝑧0𝑛 +𝜅𝑛, 𝑛 ∈ N, считая для удобства,
что кратные 𝑧𝑛 занумерованы подряд: 𝑧𝑛 = . . . = 𝑧𝑛+𝑚𝑛−1, где 𝑚𝑛 — крат-

ность 𝑧𝑛 в последовательности {𝑧𝑘}𝑘>1. Положим

𝜎 := {𝑛 : 𝑧𝑛 ̸= 𝑧𝑛−1, 𝑛− 1 ∈ N} ∪ {1} и

𝑟𝑘+𝜈(𝑥) := 𝑥𝜈𝑒𝑖𝑧𝑘𝑥, 𝑘 ∈ 𝜎, 𝜈 = 0,𝑚𝑘 − 1.

Тогда система функций {𝑟𝑛(𝑧)}𝑛>1 образует базис Рисса в 𝐿2(−𝑏, 𝑏).

Теорема 6. Зафиксируем 𝑆(𝑧) из (2). Тогда для любой комплексной последо-

вательности {𝑧𝑛}𝑛>1 вида (6) найдется единственный набор чисел {𝑧𝑛}𝑛=1−𝑁,0

такой, что функция 𝜃(𝑧), определяемая формулами (7) и (8), имеет вид (2).

Если числа {𝑧𝑛}𝑛=1−𝑁,0 также выбраны произвольным образом, то со-
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ответствующая функция 𝜃(𝑧) примет вид

𝜃(𝑧) = 𝑆(𝑧) + 𝑃𝑁−1(𝑧)𝑆0(𝑧) +

𝑏∫︁
−𝑏

𝑤̃(𝑥)𝑒𝑖𝑧𝑥 𝑑𝑥, 𝑤̃(𝑥) ∈ 𝐿2(−𝑏, 𝑏), (9)

где 𝑃𝑁−1(𝑧) — некоторый многочлен степени, меньшей 𝑁 .

Теперь необходимо ввести в рассмотрение наряду с 𝜃(𝑧) еще одну функ-

цию 𝜃(𝑧) того же вида (2) и с той же главной частью 𝑆(𝑧), но с другой подын-

тегральной функцией 𝑤(𝑥):

𝜃(𝑧) = 𝑆(𝑧) +

𝑏∫︁
−𝑏

𝑤̃(𝑥)𝑒𝑖𝑧𝑥 𝑑𝑥, 𝑤̃(𝑥) ∈ 𝐿2(−𝑏, 𝑏).

Для определенность следует принять следующие обозначения: если некото-

рый символ 𝜔 обозначает объект, относящийся к 𝜃(𝑧), то тот же символ с

тильдой 𝜔̃ будет обозначать аналогичный объект, соответствующий функции

𝜃(𝑧), и 𝜔̂ := 𝜔 − 𝜔̃.

Теорема 7. Для любого 𝑟 > 0 справедлива оценка

||𝑤̂||𝐿2(−𝑏,𝑏) 6 𝐶𝑟||{𝜇𝑁
𝑛 𝑧𝑛}𝑛>1−𝑁 ||𝑙2, (10)

коль скоро ||{𝜇𝑁
𝑛 (𝑧𝑛 − 𝑧0𝑛)}𝑛>1−𝑁 ||𝑙2 6 𝑟 и ||{𝜇𝑁

𝑛 (𝑧𝑛 − 𝑧0𝑛)}𝑛>1−𝑁 ||𝑙2 6 𝑟.

Демонстрация равномерной устойчивости восстановления це-

лой функции типа синуса при фиксированной 𝑆(𝑧). Для практической

демонстрации равномерной устойчивости восстановления целой функции ти-

па синуса по ее нулям введем функции

𝜃(𝑧) = sin𝜋𝑧 +

𝜋∫︁
−𝜋

𝑤(𝑥)𝑒𝑖𝑧𝑥 𝑑𝑥, 𝑤(𝑥) ∈ 𝐿2(−𝜋, 𝜋), (11)

𝜃(𝑧) = sin 𝜋𝑧 +

𝜋∫︁
−𝜋

𝑤̃(𝑥)𝑒𝑖𝑧𝑥 𝑑𝑥, 𝑤̃(𝑥) ∈ 𝐿2(−𝜋, 𝜋). (12)
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Нули функций 𝜃(𝑧) и 𝜃(𝑧) имеют вид

𝑧𝑛 = 𝑛 + κ𝑛, 𝑧𝑛 = 𝑛 + κ̃𝑛, 𝑛 ∈ Z,

где {κ𝑛} и {κ̃𝑛} — нули функций 𝑤(𝑥) и 𝑤̃(𝑥) соответственно.

Пусть последовательность {κ𝑛}𝑛∈Z содержит ровно 𝑀 нетривиальных

нулей функции 𝑤(𝑥). Иными словами, нули 𝑤(𝑥) можно представить в виде

κ𝑛𝑀
=

⎧⎨⎩κ𝑛, 𝑛 = 𝑝, 𝑝 + 𝑀 − 1,

0, 𝑛 ̸= 𝑝, 𝑝 + 𝑀 − 1.
(13)

Тогда нули функции 𝜃(𝑧) будут иметь представление

𝑧𝑛𝑀
=

⎧⎨⎩𝑛 + κ𝑛 = 𝑧𝑛, 𝑛 = 𝑝, 𝑝 + 𝑀 − 1,

𝑛, 𝑛 ̸= 𝑝, 𝑝 + 𝑀 − 1.
(14)

Разложим функцию 𝑤(𝑥) в ряд Фурье. Это разложение будет иметь следую-

щий вид:

𝑤(𝑥) =
∞∑︁

𝑛=−∞
𝑤𝑛𝑒

𝑖𝑛𝑥, 𝑤𝑛 =
1

2𝜋

𝜋∫︁
𝜋

𝑤(𝑥)𝑒−𝑖𝑛𝑥 𝑑𝑥,

откуда, в силу (11) и (14), имеем

𝑤𝑛 =
1

2𝜋

⎧⎨⎩𝜃(𝑛), 𝑛 = 𝑝, 𝑝 + 𝑀 − 1,

0, 𝑛 ̸= 𝑝, 𝑝 + 𝑀 − 1.
(15)

Далее, по теореме 2.0.2 для функции 𝜃(𝑧) справедливо представление

𝜃(𝑧) = 𝜋𝑒𝑧
∏︁
𝑛∈Z

𝑧𝑛 − 𝑧

𝜇𝑛
𝑒𝑧/𝜇𝑛,

поскольку

𝛼 = lim
𝑧→0

sin𝜋𝑧

𝑧
= 𝜋, 𝛾 = lim

𝑧→0

𝑑

𝑑𝑧
ln

sin 𝜋𝑧

𝑧
= 0, 𝛽 = 1 + 𝛾 = 1,
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𝜇𝑛 =

⎧⎨⎩𝑛, 𝑛 ̸= 0,

−1, 𝑛 = 0.

В результате некоторых преобразований получаем окончательный вид

коэффициентов ряда Фурье для функции 𝑤(𝑥):

𝑤𝑛 = (−1)𝑛+1κ𝑛

2

𝑝+𝑀−1∏︁
𝑘 ̸=𝑛
𝑘=𝑝

𝑘 + κ𝑘 − 𝑛

𝑘 − 𝑛
, 𝑛 = 𝑝, 𝑝 + 𝑀 − 1. (16)

Тогда сама функция 𝑤(𝑥) имеет вид

𝑤(𝑥) =
1

2

𝑝+𝑀−1∑︁
𝑛=𝑝

⎡⎢⎢⎣(−1)𝑛+1κ𝑛

𝑝+𝑀−1∏︁
𝑘 ̸=𝑛
𝑘=𝑝

𝑘 + κ𝑘 − 𝑛

𝑘 − 𝑛

⎤⎥⎥⎦ 𝑒𝑖𝑛𝑥.

Пример. Выберем радиус равным 𝑟 = 0.2 и сгенерируем 20 пар из 30 чисел.

С результатом ее выполнения можно ознакомиться на рисунке 1.

Рисунок 1 – Пример 1

Заключение. В ходе работы были рассмотрены новые результаты из

теории обратных спектральных задач, относящиеся к вопросу равномерной

устойчивости восстановления оператора по его спектру, т. е., по нулям его

характеристической функции. В качестве предварительного этапа была рас-

смотрена задача Борга и равномерная устойчивость восстановления первооб-
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разных вещественных потенциалов из пространства Соболева.

Далее была введена в рассмотрение целая функция, представленная

в виде произведения алгебраических многочленов и функций типа синуса

с асимптотически отделенными нулями, для которой были продемонстриро-

ваны теоремы о единственности восстановления по нулям и о равномерной

устойчивости этого восстановления.

В завершение эти результаты были рассмотрены для конкретной функ-

ции типа синуса и реализованы в виде программного кода на языке Python.

Поскольку задачи, обозначенные в начале бакалаврской работы, были

решены в ходе ее выполнения, цель работы — демонстрация результатов ис-

следования равномерной устойчивости восстановления целых функций типа

синуса по их нулям — можно считать достигнутой.
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