
МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение

высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ

ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ИМЕНИ Н. Г. ЧЕРНЫШЕВСКОГО»

Кафедра математической кибернетики и компьютерных наук

РАЗРАБОТКА СЕРВЕРНОЙ ЧАСТИ КРОССПЛАТФОРМЕННОЙ

УРБАНИСТИЧЕСКОЙ ВЕБ-ИГРЫ

АВТОРЕФЕРАТ БАКАЛАВРСКОЙ РАБОТЫ

студента 5 курса 551 группы

направления 09.03.04 — Программная инженерия

факультета КНиИТ

Васильева Михаила Владимировича

Научный руководитель

ст. преподаватель М. И. Сафрончик

Заведующий кафедрой

к. ф.-м. н., доцент С. В. Миронов

Саратов 2021



СОДЕРЖАНИЕ

ВВЕДЕНИЕ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1 Общая информация об игре . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1 Участие в игре . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Стадии игры . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Игра . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Город и карта города . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4.1 Карта города . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4.2 Проблема . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4.3 Мэр . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Городской совет . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Использованные технологии . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 ASP.NET Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Entity Framework Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 SignalR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 JwtBearer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5 Swashbuckle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Разработка серверной части проекта веб-игры . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1 Подключение базы данных . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Подключение SignalR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.3 Авторизация с помощью JWT-токенов . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.4 Расширения класса Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.5 Авторизация и регистрация . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.6 Игра . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.7 Модуль списка игр . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.8 Модуль активных игр . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.9 Модуль хаба . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.10 Модуль взаимодействия с игрой . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.11 Модуль игры . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

ЗАКЛЮЧЕНИЕ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ . . . . . . . . . . . . . . . . . . . . . . . . . . . 15



ВВЕДЕНИЕ

Современные города — сложные саморазвивающиеся системы. Урбани-

стика — набор принципов, помогающих организовать максимально комфорт-

ные для жизни города, в которых учтены потребности и интересы людей из

самых разных категорий и социальных групп. Одним из принципов урбанисти-

ки является обязательное участие горожан в планировании городской среды.

Активные граждане определяют круг проблем и контролируют их решение.

Это позволяет достичь наилучших результатов.

Целью работы является разработка серверной части кроссплатформен-

ной урбанистической веб-игры, предназначенной для обучения игроков в дан-

ной сфере. Были поставлены следующие задачи:

— проектирование базы данных;

— разработка модуля авторизации;

— разработка модуля списка игр;

— разработка модуля активных игр;

— разработка модуля хаба;

— разработка модуля взаимодействия с игрой;

— разработка модуля игры;

— реализация двустороннего обмена данными между клиентом и сервером

для модуля игры.

Для реализации этих задач был выбран язык программирования C# и

фреймворк ASP.NET Core, благодаря которому была реализована кроссплат-

форменность [1]. В качестве базы данных была выбрана MySQL, для работы

с которой использовался пакет Entity Framework Core. Двусторонний обмен

данными между клиентом и сервером реализован по протоколу WebSocket, с

использованием пакета SignalR.

Бакалаврская работа состоит из введения, трех глав, заключения, списка

используемых источников и приложений. В первом разделе описана теорети-

ческая часть и правила игры. Второй раздел содержит описание технологиче-

ского стека проекта. В третьем разделе описана практическая часть работы:

архитектура проекта и реализация модулей игры.

3



1 Общая информация об игре

Данная игра относится к виду учебно-деловых игр [2]. Основная цель та-

ких игр — научить участников ориентироваться в различных ситуациях, учиты-

вать возможности и состояния других людей, устанавливать с ними контакты,

влиять на их интересы [3]. Существует много разновидностей учебно-деловых

игр. Например, экономические или бизнес-деловые игры, но ни одной урба-

нистической игры, на момент ее разработки, найти не удалось. Большинство

таких игр существуют в формате настольной или компьютерной игры с необ-

ходимостью установки.

В качестве примеров учебно-деловых игр можно привести игры:

— «Тренинг по ощущению бизнеса» — настольная игра и ее электрон-

ная версия «Собственный КАПИТАЛ». Они представляют виртуальную

экономико-управленческую модель организации производства и сбыта

продукции с привлечением средств инвесторов.

— Компьютерные деловые игры серии «БИЗНЕС-КУРС» — суть игр в

управлении виртуальным предприятием, действующим в условиях кон-

куренции.

— «Монополия» — экономическая настольная игра. Цель игры остаться

единственным игроком, рационально используя стартовый капитал. Так-

же имеет многочисленные компьютерные воспроизведения.

Было решено создать урбанистическую веб-игру, в которой будет макси-

мально автоматизирован процесс игры, оставляя игроку только возможность

принятия решений. Формат веб-игры избавляет пользователя от необходимо-

сти установки на компьютер, а также дает возможность входа в игру в любой

момент. Автоматизация процесса игры повышает удобство и доступность для

игроков. Благодаря чему, появляется возможность проведения онлайн или оф-

флайн мероприятий, на которых любой желающий сможет в нее сыграть без

долгих объяснений.

В основе этой игры лежат бизнес-деловые пошаговые игры, в которых

любой игрок может влиять на ход игры посредством принятия определенных

решений и для того чтобы показать их правильность было решено разде-

лить игроков на две команды, конкурирующие между собой. По итогам игры

побеждает та команда, которая принимала решения, оказывающие наиболее

положительный эффект на общую среду, в которой находятся игроки этой

4



команды.

1.1 Участие в игре

Перед тем как принять участие в игре, пользователю необходимо заре-

гистрироваться. Если же у пользователя уже есть учетная запись, он может

войти в нее с использованием электронной почты и пароля. Далее пользо-

ватель может ознакомиться со списком запланированных игр. Пользователь

может зарегистрироваться на любую из игр, где еще есть свободные места.

После регистрации появляется возможность входа в игру для ознакомления с

общей информацией об игре и ожидания ее начала.

1.2 Стадии игры

Игра состоит из стадий, некоторые из них повторяются. На каждую

стадию отводится определенное время, по истечению которого игра переходит

в следующую стадию. Стадии игры:

— ожидание начала;

— выборы мэра;

— ход;

— городской совет;

— закончена.

На рисунке 1 представлена блок-схема смены стадий игры.

1.3 Игра

Перед началом игры игроки делятся на две команды, распределение иг-

роков между командами происходит случайным образом при регистрации на

игру. Каждая команда представляется городом, имеющим набор характери-

стик, изменяющихся по ходу игры.

1.4 Город и карта города

В игре может быть всего два города, каждый их них представляется

следующими параметрами:

— название;

— мэр;

— баланс казны;

— население;

5



Рисунок 1 – Блок-схема смены стадий игры

— налоговая система;

— рейтинг;

— карта.

1.4.1 Карта города

Карта города представляет собой упорядоченный набор из 24-х клеток.

Каждая клетка может быть одного из следующих типов:

— проблема;

— налог;

— зарплата;

— переезд.

Клеток типа «проблема» может быть всего 20, типа «налог» и «зарплата» по

одной, и клеток типа «переезд» — две.

1.4.2 Проблема

Всего в городе может быть 22 проблемы. Проблема — это отражение

ситуации в городе по определенному признаку, например, «безопасность» или

«здравоохранение». Проблема имеет следующие свойства:

6



— название;

— значение показателя;

— автоухудшение;

— набор состояний;

— набор решений.

В зависимости от значения показателя проблемы определяется ее состо-

яние. Существуют следующие состояния:

— плохое — при значении показателя от 0 до 2;

— нейтральное — при значении показателя от 3 до 7;

— хорошее — при значении показателя от 8 до 10.

Каждое действие оказывает эффект определенного типа. Всего три типа эф-

фектов: перемещение по карте, изменение баланса игрока и изменение дохода

игрока. Значение эффекта может быть как положительным, так и отрицатель-

ным. Таким образом, в зависимости от значения показателя, определяется

текущее состояние проблемы. Когда игрок останавливается на клетке этой

проблемы, ему предлагается выбор из действий, относящихся к текущему

состоянию проблемы. Решения проблемы предназначены для увеличения зна-

чения показателя проблемы. Чем оно выше, тем лучше состояние проблемы.

Каждое решение можно применить всего один раз за игру. Всего решений у

каждой проблемы города может быть три.

1.4.3 Мэр

У города есть три кандидата в мэры, каждый из них имеет влияние на

несколько проблем города. Влияние на показатель проблемы может быть как

положительным, так и отрицательным.

1.5 Городской совет

Во время городского совета игрокам предлагается ознакомиться со всеми

проблемами города и их состоянием. Игрок может выбрать одно или несколько

из предложенных решений для затронувших его проблем. Количество реше-

ний, за которые можно проголосовать, ограничено параметрами игры, а также

балансом казны города. По окончанию городского совета принимаются все

решения, за которые проголосовали игроки города, в порядке уменьшения

количества голосов и на которые достаточно средств в казне этого города.

7



2 Использованные технологии

В качестве технологического стека было принято решение выбрать:

— язык программирования C#;

— фреймворк ASP.NET Core;

— база данных MySQL;

— пакет Entity Framework Core;

— пакет SignalR;

— пакет JwtBearer;

— пакет Swashbuckle для ASP.NET Core.

2.1 ASP.NET Core

ASP.NET Core является кроссплатформенной, высокопроизводительной

средой с открытым исходным кодом для создания современных облачных при-

ложений, подключенных к Интернету [4]. Благодаря модульности фреймворка

все необходимые компоненты веб-приложения могут загружаться как отдель-

ные модули через пакетный менеджер Nuget.

2.2 Entity Framework Core

Entity Framework (EF) Core — это простая, кроссплатформенная и рас-

ширяемая версия технологии доступа к данным Entity Framework с откры-

тым исходным кодом, разработанная компанией Microsoft [5]. EF Core под-

держивает множество различных систем баз данных. Таким образом, можно

через EF Core работать с любой СУБД, если для нее имеется нужный провай-

дер [6]. В данном случае для работы с базами данных MySQL использовал-

ся провайдер MySql.EntityFrameworkCore, разработанный компанией Oracle.

Для работы с функциями миграции [7] использовался дополнительный пакет

EntityFrameworkCore.Tools.

2.3 SignalR

SignalR Core представляет библиотеку от компании Microsoft, которая

предназначена для создания приложений, работающих в режиме реального

времени [8]. SignalR использует двунаправленную связь для обмена сообще-

ниями между клиентом и сервером. Наилучшим механизмом для взаимодей-

ствия является WebSockets, также имеется поддержка Server-Sent Events [9] и

Long Polling [10].

8



2.4 JwtBearer

В Web API механизм авторизации полагается преимущественно на JWT-

токены. JWT (или JSON Web Token) представляет собой веб-стандарт, который

определяет способ передачи данных о пользователе в формате JSON в зашиф-

рованном виде [11].

2.5 Swashbuckle

Пакет Swashbuckle для ASP.NET Core позволяет легко добавить в про-

ект документацию Swagger [12]. В дополнение к генератору Swagger также

содержит встроенную версию удобного интерфейса swagger-ui.

9



3 Разработка серверной части проекта веб-игры

Архитектура проекта представлена на рисунке 2. Клиентская часть реа-

лизована с использованием библиотеки React. Для коммуникации между кли-

ентом и сервером были использованы два протокола: HTTP [13] и WebSocket

[14]. Для коммуникации вне модуля игры использован классический для REST-

API [15] протокол HTTP. В качестве базы данных был сделан выбор в пользу

MySQL.

Рисунок 2 – Архитектура проекта

При создании проекта использован шаблон веб-API для ASP.NET Core.

Структура проекта во многом напоминает MVC [16], но в ней отсутствуют

представления.

3.1 Подключение базы данных

Конфигурация подключения к базе данных описывается в файле конфи-

гурации проекта appsettings.json. В классе Startup, в методе ConfigureServices

добавим контекст подключения, для того чтобы затем получать его в конструк-

торе контроллера через механизм внедрения зависимостей [17].

3.2 Подключение SignalR

Для подключения SignalR необходимо в классе Startup, в методе

ConfigureServices задействовать сервисы SignalR, а также в методе

Configure связать запросы и класс хаба GameHub. Этот класс будет обраба-

тывать все запросы.

3.3 Авторизация с помощью JWT-токенов

Создадим специальный класс AuthenticationOptions, в котором будут

описаны свойства для генерации токена [18]. Для того чтобы встроить функ-

циональность JWT-токенов в конвейер обработки запроса необходимо исполь-

зовать компонент JwtBearerAuthenticationMiddleware.

10



SignalR на стороне клиента не добавляет токен в заголовки запроса.

И при обращении к хабу токен фактически будет посылаться как параметр

строки запроса. Добавим событие OnMessageReceived, в котором передадим

строку токена из параметров запроса в параметры контекста, для дальнейшей

валидации токена [19].

Дополнительно добавим событие OnTokenV alidated, для проверки су-

ществования пользователя в базе данных.

3.4 Расширения класса Controller

Для удобства обработки ошибок контроллеров был написан универсаль-

ный обработчик исключений, метод расширения [20] ExceptionHandling для

класса Controller. Данный метод производит простое логирование ошибок

в консоль, а также проводит проверку типа исключения, возвращая соответ-

ствующее сообщение об ошибке. Еще один расширяющий метод GetUserId

— возвращает идентификатор пользователя из объекта Claims.

3.5 Авторизация и регистрация

Авторизация и регистрация реализована в контроллере AuthController.

PUT-запрос SignIn позволяет выполнить авторизацию. POST-запрос SignUp

реализует возможность регистрации.

3.6 Игра

Состояние игры может быть одним из следующих:

— создана;

— ожидает начала;

— в процессе;

— пауза;

— закончена;

— завершена с ошибкой.

Было принято решение дополнить стадии, описанные в правилах. Так

как на каждую стадию отводится определенное время, и они идут подряд друг

за другом, возникает необходимость выделения дополнительного времени на

расчет данных. Перед началом очередной стадии нужно подготовить данные,

отправляемые на клиентскую часть всем игрокам. В конце стадии необходимо

обработать данные, полученные с клиентской части. И выделить дополнитель-

11



ное время на ожидание данных с клиентской части для того, чтобы компенси-

ровать задержки интернет-соединения, в случае если пользователь выполнил

какое-либо действие в последний момент. Необходимо дополнить лишь стадии

«выбор мэра», «ход» и «городской совет». Таким образом каждая стадия будет

включать в себя набор из основной и дополнительных стадий:

1. подготовка;

2. стадия;

3. ожидание;

4. расчет результатов.

При этом стоит отметить, что время, выделенное на основную стадию, оста-

ется неизменным, дополнительные стадии используют отдельное время, отоб-

ражаемое игроку на клиентской части как пауза между стадиями игры. Также

добавилась стадия «подождите» — это стадия по умолчанию. Сразу после

начала игра переходит в эту стадию. Она же будет отправляться на клиент-

скую часть вместо стадий «подготовка», «ожидание» и «расчет результатов»,

так как на клиентской части игроку эта информация не нужна. На рисунке 3

представлена блок-схема смены стадий игры.

Рисунок 3 – Блок-схема смены стадий игры

12



3.7 Модуль списка игр

Для реализации модуля был создан контроллер GameController. GET-

запрос list возвращает список игр, находящихся в одном из состояний: «ожи-

дание начала», «в процессе» и «пауза». POST-запрос registration выполняет

регистрацию на игру.

3.8 Модуль активных игр

Сервис GameCenterService реализует этот модуль. Данный сервис пред-

назначен для запуска всех активных игр и передачи им команд, полученных

хабом от клиентской части. Так как игра коммуницирует с клиентской частью

через хаб, необходимо передать в сервис его контекст [21].

3.9 Модуль хаба

Хаб состоит из набора типовых методов, принимающих команды от кли-

ентской части. Набор параметров для каждой команды хаба отличается. Реа-

лизованы следующие методы:

— отключение клиента от хаба;

— выбор мэра;

— выбор действия во время стадии «ход»;

— смена города;

— запуск события смены города;

— выбор решений во время стадии «городской совет».

3.10 Модуль взаимодействия с игрой

Данный модуль описывает взаимодействия с активной игрой. Контрол-

лер PlayGameController реализует функционал этого модуля. POST-запрос

enter выполняет вход в игру и возвращает информацию о ней.

3.11 Модуль игры

Данный модуль реализует основную логику игры, он описан в клас-

се PlayGameService. Первоначально выполняется проверка возможности за-

пуска игры и загрузка всех необходимых данных. Далее запускается цикл по

стадиям игры. В начале каждой стадии вычисляются необходимые данные, ко-

торые будут отправлены на клиентскую часть. Во время стадии выполняется

сбор данных о действиях игроков, а в конце — обработка полученных данных.

13



ЗАКЛЮЧЕНИЕ

В результате выполнения бакалаврской работы была разработана сервер-

ная часть кроссплатформенной урбанистической веб-игры, были выполнены

следующие задачи:

— спроектирована база данных;

— разработаны модули авторизации, списка игр, активных игр, хаба, взаи-

модействия с игрой и игры;

— реализован двусторонний обмен данными с клиентом для модуля игры.

В процессе разработки были применены следующие технологии:

— ASP.NET Core;

— Entity Framework Core;

— JWT;

— SignalR.

В дальнейшем планируется разработать следующие модули:

— Чат — предназначен для общения игроков команды во время игры.

— СМИ — информирование игроков команды о событиях, произошедших

в городе во время игры. События возникают при попадании игрока на

клетку типа «проблема», принятии решения на городском совете и при

создании вручную администратором или модератором игры.

— Административная панель — предназначена для настройки параметров

игры, наблюдения и управления активной игрой.

Процесс внедрения программного продукта на виртуальный сервер про-

изводится через терминал с помощью bash-скрипта, который предоставляет

пользователю понятный и удобный интерфейс взаимодействия. Скрипт уста-

навливает все необходимые пакеты для работы программного продукта, загру-

жает и запускает приложение. Дальнейшее взаимодействие через терминал не

требуется.

14



СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1 Прайс, М. C# 7 и .NET Core. Кросс-платформенная разработка для про-

фессионалов / М. Прайс. — СПб.: Питер.

2 Коджаспирова, Г. М. Педагогика / Г. М. Коджаспирова. — Москва: Юрайт,

2015.

3 Гребенюк, О. С. Теория обучения / О. С. Гребенюк. — Москва: Юрайт,

2019.

4 Прайс, М. C# 8 и .NET Core. Разработка и оптимизация / М. Прайс. —

СПб.: Питер.

5 Фримен, А. Entity Framework Core 2 для ASP.NET Core MVC для профес-

сионалов / А. Фримен. — Москва: Вильямс, 2019.

6 Поставщики баз данных [Электронный ресурс]. — URL:

https://docs.microsoft.com/ru-ru/ef/core/providers/ (Дата обращения

01.05.2021). Загл. с экр. Яз. рус.

7 Обзор миграций [Электронный ресурс]. — URL:

https://docs.microsoft.com/ru-ru/ef/core/managing-schemas/migrations/ (Дата

обращения 01.05.2021). Загл. с экр. Яз. рус.

8 Vemula, R. Real-Time Web Application Development / R. Vemula. — New York

City: Apress, 2017.

9 Server-sent events [Электронный ресурс]. — URL:

https://html.spec.whatwg.org/multipage/server-sent-events.html#server-sent-

events (Дата обращения 02.05.2021). Загл. с экр. Яз. англ.

10 Known Issues and Best Practices for the Use of Long Polling

and Streaming in Bidirectional HTTP [Электронный ресурс]. — URL:

https://datatracker.ietf.org/doc/rfc6202/ (Дата обращения 02.05.2021). Загл.

с экр. Яз. англ.

11 Fagerberg, J. ASP.NET Core 2.2 MVC, Razor Pages, API, JSON Web Tokens

& HttpClient / J. Fagerberg. — Amazon Digital Services LLC - KDP Print US,

2019.

15



12 Swashbuckle [Электронный ресурс]. — URL:

https://github.com/domaindrivendev/Swashbuckle.WebApi (Дата обращения

04.05.2021). Загл. с экр. Яз. англ.

13 Hypertext Transfer Protocol – HTTP/1.1 [Электронный ресурс]. — URL:

https://datatracker.ietf.org/doc/rfc2616/ (Дата обращения 04.05.2021). Загл.

с экр. Яз. англ.

14 The WebSocket Protocol [Электронный ресурс]. — URL:

https://datatracker.ietf.org/doc/rfc6455/ (Дата обращения 04.05.2021).

Загл. с экр. Яз. англ.

15 Representational State Transfer (REST) [Электронный ресурс]. — URL:

https://www.ics.uci.edu/f̃ielding/pubs/dissertation/rest_arch_style.htm (Дата

обращения 04.05.2021). Загл. с экр. Яз. англ.

16 Общие сведения ASP.NET Core MVC [Электронный ресурс]. — URL:

https://docs.microsoft.com/ru-ru/aspnet/core/mvc/overview (Дата обращения

04.05.2021). Загл. с экр. Яз. рус.

17 Внедрение зависимостей в ASP.NET Core [Электронный ресурс]. —

URL: https://docs.microsoft.com/ru-ru/aspnet/core/fundamentals/dependency-

injection (Дата обращения 05.05.2020). Загл. с экр. Яз. рус.

18 JWT Validation and Authorization in ASP.NET Core [Электронный ресурс]. —

URL: https://devblogs.microsoft.com/aspnet/jwt-validation-and-authorization-

in-asp-net-core/ (Дата обращения 07.05.2020). Загл. с экр. Яз. англ.

19 Проверка подлинности и авторизация в ASP.NET Core Sig-

nalR [Электронный ресурс]. — URL: https://docs.microsoft.com/ru-

ru/aspnet/core/signalr/authn-and-authz (Дата обращения 07.05.2020). Загл. с

экр. Яз. рус.

20 Методы расширения (Руководство по программированию в

C#) [Электронный ресурс]. — URL: https://docs.microsoft.com/ru-

ru/dotnet/csharp/programming-guide/classes-and-structs/extension-methods

(Дата обращения 07.05.2020). Загл. с экр. Яз. рус.

21 ASP.NET Core узла SignalR в фоновых службах [Электронный ресурс]. —

URL: https://docs.microsoft.com/ru-ru/aspnet/core/signalr/background-

services (Дата обращения 08.05.2020). Загл. с экр. Яз. рус.

16


	ВВЕДЕНИЕ
	Общая информация об игре
	Участие в игре
	Стадии игры
	Игра
	Город и карта города
	Карта города
	Проблема
	Мэр

	Городской совет

	Использованные технологии
	ASP.NET Core
	Entity Framework Core
	SignalR
	JwtBearer
	Swashbuckle

	Разработка серверной части проекта веб-игры
	Подключение базы данных
	Подключение SignalR
	Авторизация с помощью JWT-токенов
	Расширения класса Controller
	Авторизация и регистрация
	Игра
	Модуль списка игр
	Модуль активных игр
	Модуль хаба
	Модуль взаимодействия с игрой
	Модуль игры

	ЗАКЛЮЧЕНИЕ
	СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

