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ВВЕДЕНИЕ

Популярность Интернета значительно выросла за последние несколько

лет, он стал основным средством обмена файлами. Услуги с высокой пропуск-

ной способностью доступны сегодня всем, но факт остается фактом: время -

самой дорогой ресурс, который есть у человека. Экономия времени и места для

хранения означает более низкие затраты. Это проложила путь для требований

улучшения сжатия данных.

Сжатие данных подразделяется на две основные категории: без потерь и

с потерями. Сжатие без потерь создает точную копию оригинала после распа-

ковки, в то время как его аналог с потерями - нет. Типичным примером сжатия

без потерь является ZIP формат. Эта форма сжатия данных эффективна для

ряда файлов. Сжатие изображения и аудио в этом формате не так эффек-

тивно, поскольку информация в этих типах данных менее избыточна. Аудио

компакт-диски используют популярный формат WAV. Формат WAV несжатый

и содержит звуковой файл без потерь качества. В связи с этим он имеет множе-

ство недостатков. Размер файла WAV зависит от его частоты дискретизации.

8-битный моно WAV с частотой дискретизации 22050 Гц (герц) займет 22050

байтов за секунду. 16-битный стерео WAV с частотой дискретизации 44,1 кГц

(килогерц) занимает 176 400 байт за секунду (44 100 байт в секунду * 2 байта

* 2 канала). Одна минута аудио с качеством компакт-диска занимает при-

мерно 10 МБ. Эти огромные требования к хранению данных способствовали

популярности MP3 как одного из наиболее широко используемых стандартов

в мире сжатие звука. В данной работе будет оценена эффективность сжатия

аудио-информации различными алгоритмами и проанализировано влияние по-

тери точности на качественное восприятие звукового сигнала. Мы сопоставим

результаты компрессии с потерями на основе быстрого преобразования Фурье

и вейвлет-преобразования.

Цель:

Оценить эффективность сжатия с потерями на примере компрессии зву-

ковых файлов с помощью различных алгоритмов и проследить, как потеря

точности влияет на качественное восприятие звукового сигнала.

Задачи:

1. реализовать спектральное разложение сигнала с помощью быстрого пре-

образования Фурье;
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2. изучить и реализовать вейвлет-преобразование;

3. разработать и реализовать адаптивную квантизацию спектральных коэф-

фициентов;

4. реализовать алгоритм Хаффмана для сжатия данных без потерь;

5. сравнить эффективность и качество компрессии для БПФ и разных ва-

риантов вейвлетов;

6. сравнить эффективность и качество компрессии для разной битности

квантизации спектральных коэффициентов.

Данная тема является актуальной в связи с тем, что количество инфор-

мации растёт, и необходимо повышать эффективность хранения и передачи

информации, допускающей потерю качества.
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1 Общие сведения о работе

Реализуем сжатие и распаковку звукового wav-файла, с применением ал-

горитмов быстрого преобразования Фурье, вейвлет-преобразования и Хафф-

мана. В общем процесс сжатия имеет следующий вид:

1. Вычитка информации из файла/запись восстановленных данных в новый

файл;

а) БПФ/ОБПФ;

б) Вейвлет-преобразование/обратное вейвлет-преобразование;

2. Нормализация/денормализация коэффициентов;

3. Сжатие алгоритмом Хаффмана/распаковка алгоритмом Хаффмана;

1.1 Структура wav-файла

Для начала необходимо изучить, из чего состоит wav-файл, в его структу-

ре данные начинаются с 44 байта, а до этого хранится заголовок. В программе

заголовок представлен следующей структурой.

Проводим вычитку файла и получаем необходимые данные. Запись вос-

становленных коэффициентов заключается в том, чтобы занести в новый wav-

файл заголовок изначального, но уже в область данных заполнить новыми

числами, полученными после ОБПФ и обратного вейвлет-преобразования.

1.2 Быстрое преобразование Фурье

Быстрое преобразование Фурье является одним из важнейших алгорит-

мов для обработки сигналов и их анализа. БПФ позволяет перевести сигнал из

рассмотрения во временной области в частотную, т.е. раскладывает сигнал на

синусоиду и косинусоиду. Представление функции в частотной области назы-

вают спектром функции. На выходе имеется сигнал с такой же размерностью,

что и у начального [1, 2].

Прямое БПФ:

Xn =
N−1∑
k=0

xkW
kn
N ,

гдеW kn
N = e−i

2π
N kn – дискретные экспоненциальные функции, n = 1, 2, . . . , N−

1.

БПФ выполняется при помощи дополнительной функции Butterfly, ко-

торая позволяет производить обработку непрерывного потока комплексных
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отсчетов с АЦП, частота дискретизации которого в 2 раза выше тактовой ча-

стоты обработки. То есть «бабочка» БПФ за один такт производит вычисление

сразу для двух комплексных отсчетов.

Разбиение N-точечного ДПФ на два N/2-точечных.

Пусть x(k) – действительная последовательность длиной в N отсчётов

и пусть x(k) ⇔ X(n), n ∈ N . Разобьём последовательность x(k) на пару
N
2 -точечных последовательности x1(k) и x2(k), где x1(k) = x(2k) – последо-

вательность для чётных отсчётов, x2(k) = x(2k+1) – последовательность для

чётных отсчётов. Пусть x1(k) ⇔ X1(n) и x2(k) ⇔ X2(n) – N
2 -точечные ДПФ

этих подпоследовательностей. Установим связь X(n) с X1(n1)N/2 и X2(n2)N/2.

Для первых N
2 коэффициентов ДПФ можно записать:

X(n) =
N−1∑
k=0

x(k)W−nk
N =

N/2−1∑
k=0

x(2k)W−2nk
N +

N/2−1∑
k=0

x(2k + 1)W
−n(2k+1)
N =

=

N/2−1∑
k=0

x1(k)W
−nk
N/2 +W−n

N

N−1∑
k=0

x2(k)W
−nk
N/2 = X1(n)N/2 +W−n

N X2(n)N/2.

Здесь учтено, что W−2nk
N = W−nk

N/2 .Для n = N/2, . . . , N − 1 с учётом

свойство симметрии будет иметь: X(n) = X∗(N − n).

1.3 Вейвлеты

Вейвлеты - это целое семейство математических функций особого вида,

которые позволяют анализировать частотные компоненты данных, и получа-

ются при помощи сжатия (растяжения) и сдвигов по временной оси исходного

вейвлета. Их график имеет вид волнообразных колебаний с амплитудой, за

что они и заслужили такое название [3, 4]. Общий вид вейвлет-функции:

ψab(t) =
1√
a
φ

(
t− b
a

)
,

где φ(t) – исходный(материнский) вейвлет, 1√
a

– множитель, обеспечи-

вающий нормализацию, t – время, b – параметр, характеризующий сдвиг по

времени, a – параметр масштаба, ψ(t) ∈ L.

Большинство семейств дискретных вейвлетов строится на основе несколь-

ких аксиом кратно-масштабного анализа. Существует три фундаментальных
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свойства:

— Ортогональность

— Компактность носителя

— Симметричность формы

В общем случае вейвлеты обладают из них только двумя. Семейств,

которые обладают всеми тремя, не существует.

Существует множество видов вейвлетов: грубые, бесконечные регуляр-

ные, ортогональные с компактным носителем, биортогональные с компактным

носителем, комплексные. Каждый вид имеет свои преимущества и недостатки.

В данной работе будут рассматриваться ортогональные вейвлеты с компакт-

ным носителем, а именно вейвлеты Добеши, Симлета и Койфлета. Чтобы не

высчитывать их коэффициенты самостоятельно, можно найти их на просторах

интернета. В программе они реализованы как статические массивы.

Преобразование Фурье хорошо для стационарных сигналов, потому что

оно даёт полную информацию о спектральных характеристиках сигнала в

исследуемой частотной области и усредняет значение сигнала во времени, в

то время как вейвлет-преобразование исследует изменения характеристик во

времени и хорошо для нестационарного сигнала.

Свойства вейвлет-преобразования:

— Ограниченность. Квадрат нормы функции должен быть конечным.

— Локализация. Вейвлет-преобразование в отличие от преобразования Фу-

рье использует локализованную исходную функцию и во времени, и по

частоте.

— Нулевое среднее. График исходной функции должен осциллировать (быть

знакопеременным) вокруг нуля на оси времени и иметь нулевую пло-

щадь.

Равенство нулю площади функции ψ(t), т.е. нулевого момента, приводит

к тому, что фурье-преобразование Sψ(ω) этой функции равно нулю при

ω = 0 и имеет вид полосового фильтра. При различных значениях a это

будет набор полосовых фильтров.

Часто для приложений бывает необходимо, чтобы не только нулевой, но

и все первые n моментов были равны нулю.

— Автомодельность. Характерным признаком вейвлет-преобразования яв-

ляется его самоподобие. Все вейвлеты конкретного семейства ψab(t) име-
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ют то же число осцилляций, что и материнский вейвлет ψ(t), поскольку

получены из него посредством масштабных преобразований (a) и сдвига

(b).

За счет изменения масштаба (увеличение a приводит к сужению фурье-

спектра функции ), вейвлеты способны выявлять различие в характери-

стиках на разных шкалах (частотах), а за счет сдвига- проанализировать

свойства сигнала в разных точках на всем исследуемом интервале. По-

этому, при анализе нестационарных сигналов, за счет свойства локально-

сти вейвлетов, получают существенное преимущество перед преобразо-

ванием Фурье, которое дает только глобальные сведения о частотах (мас-

штабах) анализируемого сигнала, так как используемая при этом система

функций (комплексная экспонента или синусы и косинусы) определена

на бесконечном интервале.

Осуществляться данное преобразование будет при помощи алгоритма

Малла(другими словами, алгоритма быстрого преобразования). Одновремен-

но сигнал раскладывается с помощью высокочастотного и низкочастотного

фильтров. В результате получаются детализирующие коэффициенты (после

ВЧ-фильтра) и коэффициенты аппроксимации (после НЧ-фильтра).

Так как половина частотного диапазона сигнала была отфильтрована, то,

согласно теореме Котельникова, отсчёты сигналов можно проредить в 2 раза.

метод одномерного дискретного вейвлет-преобразования (ДВП)N -го по-

рядка последовательности xn определяется следующими рекуррентными со-

отношениями:

a(i)n =
N−1∑
k=0

gka
i−1
2n−ki = 1, 2, . . . , J

d(i)n =
N−1∑
k=0

hka
i−1
2n−ka

(0)
n ≡ xn,

где a(i)n и d(i)n являются аппроксимирующими и детализирующими коэффици-

ентами i-го уровня, а gk и hk(k = 0, 1, . . . , N − 1) – коэффициенты низкоча-

стотного и высокочастотного анализирующих фильтров соответственно.

С другой стороны, сигнал xn может быть восстановлен по коэффициен-
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там a
(J)
n , d

(J)
n , d

(J−1)
n , . . . , d

(1)
n путём последовательной итерации по формулам:

a∗(i−1)n =


∑N/2−1

k=0 g′2ka
∗(i)
m
2 −k

+
∑N/2−1

k=0 h′2kd
∗(i)
m
2 −k

, m – чётное∑N/2−1
k=0 g′2k+1a

∗(i)
m−1
2 −k

+
∑N/2−1

k=0 h′2k+1d
∗(i)
m−1
2 −k

, m – нечётное

где g′k и h′k являются коэффициентами низкочастотного и высокочастот-

ного синтезирующих фильтров, соответственно.

Для того, чтобы восстановленный сигнал соответствовал исходному,

должны быть соответствующим образом подобраны анализирующий (раскла-

дывающий) и синтезирующий (собирающий) фильтры.

Для вейвлет-преобразования функции f(x) необходимо вычислить се-

рию коэффициентов an, dn, dn−1, . . . , d1 , где an - аппроксимация функции, di -

детализирующие коэффициенты функции, i = 1, . . . , n. Каждый коэффициент

находится интегрированием (11, 12):

aJ−N,k = (f, ϕJ−N,k) =

∫
R

f(x)ϕJ−N,k(x)dx;

dJ−m,k = (f, ψJ−m,k) =

∫
R

f(x)ψJ−m,k(x)dx,m = 1, 2, . . . , N.

Возникает проблема вычисления большого количества интегралов с необ-

ходимой точностью. Следует также учитывать, что при высоком уровне раз-

решения J носители функций ϕJ,k() и ψJ, k() становятся малыми порядка
1
2J .

1.3.1 Алгоритм Малла

Быстрое вейвлет-преобразование, предложенное Малла позволяет ре-

шить эту проблему. Алгоритм Малла даёт возможность вычислять коэффи-

циенты вейвлет-разложения без интегрирования, используя алгебраические
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операции на основе свёртки:

a(i)n =
N−1∑
k=0

gka
i−1
2n−ki = 1, 2, . . . , J

d(i)n =
N−1∑
k=0

hka
i−1
2n−ka

(0)
n ≡ xn,

где a
(i)
n и d

(i)
n являются аппроксимирующими и детализирующими ко-

эффициентами i-го уровня, а gk и hk(k = 0, 1, . . . , N − 1) – коэффициенты

низкочастотного и высокочастотного анализирующих фильтров соответствен-

но; N – порядок фильтра.

Эти равенства обеспечивают быстрые алгоритмы вычисления вейвлет-

коэффициентов (каскадные алгоритмы, алгоритмы Малла). Термин «быстрые»

означает не только, что в (13) используются более быстрые алгебраические

процедуры, но и то, что при каждом преобразовании общее число новых ко-

эффициентов не увеличивается в два раза, а остаётся прежним.

Разложение можно повторять несколько раз для дальнейшего увеличения

частотного разрешения с дальнейшим прореживанием коэффициентов после

НЧ и ВЧ-фильтрации. Это можно представить в виде двоичного дерева, где

листья и узлы соответствуют пространствам с различной частотно-временной

локализацией.

Единственное отличие фильтрации в алгоритме Малла от классического

КИХ-фильтра, задаваемого уравнением y(k) =
∑m

i=0 bix(k − i), заключается в

том, что значения фильтруемого ряда выбираются через один - индекс 2n− k
в ai−12n−k. Это и есть децимация 2↓ – исключение из обработки каждого второго

элемента.

1.4 Нормализация и денормализация коэффициентов

Затем, полученный из БПФ сигнал нормализуем, т.е. из полученного

диапазона значений [K1, K2] сначала получаем значения вида [0, 1], а затем

приводим к виду [0, n], где n - 2b, а b – битность, которую мы хотим полу-

чить. Значения действительной и мнимой частей вычисляются по формуле:

x = (y − min)/(max − min) ∗ bits, где x – нормализованное значение, y –

исходное значение, min – минимальное значение из диапазона [K1, K2], max

– максимальное значение из диапазона [K1, K2], bits = 2b. Денормализация
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является обратной операцией для описанной ранее.

1.5 Алгоритм Хаффмана

Алгоритм Хаффмана является одним из первых эффективных алгорит-

мов для кодирования. Он был предложен в 1952 году. Основная идея алгоритма

основывается на том, что обладая данными о частоте повторения каждого из

символов, встречающегося в тексте, можно для каждого символа построить

код переменной длины, который будет состоять из целого количества битов.

Символ с большей вероятностью появления будет ставится в соответствии код

меньшей длины. Под символами в работе подразумеваются некие повторяю-

щиеся элементы строки, такие как буквы, цифры, знаки препинания, пробелы

и т.д., а под кодом будем понимать последовательный набор битов [5].

Рассмотрим каждый из шагов реализации алгоритма Хаффмана на при-

мере словосочетания "по шоссе Саша шел с саше". Для начала нужно совер-

шить предподготовку данного словосочетания путем разбиения его на симво-

лы, а затем посчитать, сколько раз каждый символ встречается в тексте. На

этом основании составим таблицу с частотами:

Затем на основании этой таблицы строится дерево Хаффмана по следу-

ющему алгоритму:

1. Каждый символ входного алфавита является свободным узлом, то есть

листом, который имеет свой вес равный количеству вхождений символа

в текст

2. Выбираются два узла с наименьшим весом

3. Создаётся третий узел, вес которого равен сумме весов взятых узлов. Уз-

лы, которые уже образовали своё дерево, удаляются из списка свободных

узлов, а их родитель добавляется в этот список

4. Дуга до одного листа будет соответствовать биту 0, а до другой биту 1

5. Вернуться к шагу 2, если количество свободных узлов не равно одному

Массив с нормализованными значениями сжимаем алгоритмом Хафф-

мана. В результате данные записываются в файл с разрешением DHF.

Функция Main для сжатия принимает на вход файл, в котором содер-

жатся нормализованные значения, полученные в преобразовании Фурье. Они

хранятся в виде последовательных чисел сначала всех действительных ча-

стей, а затем мнимых. Для реализации алгоритма сжатия необходимо создать

из входных данных дерево Хаффмана, закодировать все значения, а затем запи-
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сать полученное в файл output.dhf. Полный листинг для алгоритма Хаффмана

приведён во вложениях.

В результате было получено 6 разных выходных файлов.

Алгоритм Хаффмана является одним из первых эффективных алгорит-

мов для кодирования. Он был предложен в 1952 году. Основная идея алгоритма

основывается на том, что обладая данными о частоте повторения каждого из

символов, встречающегося в тексте, можно для каждого символа построить

код переменной длины, который будет состоять из целого количества битов.

Символ с большей вероятностью появления будет ставится в соответствии код

меньшей длины. Под символами в работе подразумеваются некие повторяю-

щиеся элементы строки, такие как буквы, цифры, знаки препинания, пробелы

и т.д., а под кодом будем понимать последовательный набор битов .

Рассмотрим каждый из шагов реализации алгоритма Хаффмана на при-

мере словосочетания "по шоссе Саша шел с саше". Для начала нужно совер-

шить предподготовку данного словосочетания путем разбиения его на симво-

лы, а затем посчитать, сколько раз каждый символ встречается в тексте. На

этом основании составим таблицу с частотами:

Затем на основании этой таблицы строится дерево Хаффмана по следу-

ющему алгоритму:

1. Каждый символ входного алфавита является свободным узлом, то есть

листом, который имеет свой вес равный количеству вхождений символа

в текст

2. Выбираются два узла с наименьшим весом

3. Создаётся третий узел, вес которого равен сумме весов взятых узлов. Уз-

лы, которые уже образовали своё дерево, удаляются из списка свободных

узлов, а их родитель добавляется в этот список

4. Дуга до одного листа будет соответствовать биту 0, а до другой биту 1

5. Вернуться к шагу 2, если количество свободных узлов не равно одному

Функция Main описывает процесс, обратный для сжатия алгоритмом

Хаффмана. Тут по считанным значениям восстанавливается дерево, по ко-

торому идет восстановление исходных данных. Весь листинг для алгоритма

Хаффмана описан в приложении.
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2 Результаты сравнительного анализа

Исходный файл имел размер 1025 КБ. Проведя по 7 тестовых запусков

для каждого вида вейвлетов и БПФ с разными значениями b – битности.

Для оценки полученных результатов необходимо было просмотреть по-

лученные коэффициенты сжатия, полученные при разной нормализации и раз-

ных алгоритмах, а также оценить потерю информации, т.е. замерить относи-

тельную погрешность потерь и провести сравнение полученных результатов.

Выводы:

— программой с применением БПФ удается добиться более лучшего сжа-

тия, чем с вейвлет-преобразованием;

— преобразование вейвлетами имеет меньшие потери, чем преобразование

Фурье;

— все виды ортогональных вейвлетов имеют примерно одинаковые коэф-

фициенты сжатия и потери;

— наиболее подходящей является нормализация значений к 10-12–битным.

13



ЗАКЛЮЧЕНИЕ

Целью данной работы было оценить эффективность сжатия аудио-информации

различными алгоритмами и проанализировать влияние потери точности на ка-

чественное восприятие звукового сигнала. Поставленные цели были достиг-

нуты и все задачи выполнены. На основании полученных результатов можно

сделать вывод, что наиболее эффективным алгоритмом для компрессии аудио-

файлов является подход, основанный на БПФ и сжатии алгоритмом Хафмана.

В ходе работы была оценена зависимость коэффициента сжатия и процента

потерь от битности квантизации нормализованных значений спектра. Наилуч-

шими показателями обладают программы с приведением к 10-12–битным зна-

чениям. Для них коэффициенты сжатия оказались самыми большими при наи-

меньших потерях. Полученный результат, т.е. восстановленный сигнал можно

оценить, включив его в любом музыкальном проигрывателе. Теория вейвлет-

преобразований требует дальнейшего изучения для улучшения результатов

работы программы.

Выполнены следующие задачи:

1. реализовано спектральное разложение сигнала с помощью быстрого пре-

образования Фурье;

2. изучино и реализовано вейвлет-преобразование;

3. разработана и реализована адаптивную квантизацию спектральных ко-

эффициентов;

4. реализован алгоритм Хаффмана для сжатия данных без потерь;

5. проведено сравнение эффективности и качества компрессии для БПФ и

разных вариантов вейвлетов;

6. проведено сравнение эффективности и качества компрессии для разной

битности квантизации спектральных коэффициентов.
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