
МИНОБРНАУКИ РОССИИ
Федеральное государственное бюджетное образовательное учреждение

высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ
ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ИМЕНИ Н.Г.ЧЕРНЫШЕВСКОГО»

Кафедра дискретной математики и информационных технологий

РЕАЛИЗАЦИЯ КОМПИЛЯТОРА ДЛЯ ЯЗЫКА
ПРОГРАММИРОВАНИЯ LITEASM

АВТОРЕФЕРАТ БАКАЛАВРСКОЙ РАБОТЫ

студента 4 курса 421 группы
направления 09.03.01 —Информатика и вычислительная техника
факультета КНиИТ
Логинова Ильи Владиславовича

Научный руководитель
доцент, к.ф.-м. н. О.В.Мещерякова

Заведующий кафедрой
доцент, к.ф.-м. н. Л.Б.Тяпаев

Саратов 2021

СОДЕРЖАНИЕ

ВВЕДЕНИЕ . 3
1 Основная часть . 5
ЗАКЛЮЧЕНИЕ . 15
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ . 16

ВВЕДЕНИЕ

В настоящее время существует большое количество различный языков
программирования [1] [2], каждый из которых предоставляет разный функ-
циональные возможности для разных задач. При выборе языка программи-
рования разработчик должен учитывать не только его возможности, но и
особенности архитектуры процессора, действующую операционную систему
и особенности аппаратно-программного комплекса. Все эти характеристики
и представляют собой платформу для решения конкретных задач.

Компиляция – это процесс перевода текста, написанного на языке про-
граммирования, в набор машинных кодов. Компилятор – это программа, вы-
полняющая процесс компиляции. Современные языки программирования по
большей частью лишены зависимости от используемой платформы, тогда
как компиляторы напрямую зависят от неё. И ещё меньше компиляторов,
которые поддерживают несколько различных платформ [3]. Огромное раз-
нообразие аппаратных средств, архитектур и широта решаемых задач ини-
циирует проектирование, разработку и реализацию компиляторов, которые
обеспечивают поддержку самой операционной системы, поддержку различ-
ных архитектур процессора и ориентируются на особенности аппаратного
комплекса. Эти задачи возникают при разработке программного обеспече-
ния микроконтроллеров, т.е. микросхем, предназначенных для управления
электронными устройствами. Типичный микроконтроллер сочетает на одном
кристалле функции процессора и периферийного устройства, оперативное за-
поминающее устройство, постоянное запоминающее устройство и способный
выполнять относительно простые задачи. Широкий класс различных пери-
ферийных устройств требует широкого класса микроконтроллеров с различ-
ными физическими и логическими характеристикам.

Современные задачи предполагают использование различных вычисли-
тельных систем и комплексов, сильно отличающихся друг от друга, и поэтому
интерес представляет компилятор, который поддерживает различные плат-
формы. Сегодня известны несколько таких компиляторов:
— GNU Compiler Collection [4] (GCC) – набор компиляторов для различ-

ных языков: Ada, C, C++ [5], Fortran и др. Достоинством этого компи-
лятора является возможность поддержки различных архитектур про-
цессора, например: x86, x86-64, ARM и др.

3

— MinGW [6] – программный порт компилятора GCC для операционной си-
стемы Windows [7], обеспечивающий её более полную поддержку.

— Intel oneAPI Toolkits [8] – компилятор C++ для процессоров семейств
x86, x86-64 и IA-64 [9], позволяющий использовать операции, которые
характерны только для таких процессоров.

— IAR C Compiler [10] – компилятор для языков C и C++, поддерживаю-
щий различные микропроцессоры.
Разработчик может столкнуться с проблемой отсутствия компилятора

под определённую используемую платформу. С такой проблемой чаще всего
встречаются разработчики программного обеспечения для микроконтролле-
ров. Решение этой проблемы может происходить 3 способами:

1. ограничение числа поддерживаемых платформ. Но тогда пользователь
лишается возможности выбора платформы;

2. использование языков низкого уровня или машинный код, что позволя-
ет выполнять операции, присущие определённой платформе, которые
недоступны на других платформах;

3. реализация компилятора для одной определённой платформы, способ-
ный поддерживать и другие платформы, но это связано с большими
затратами человеко-машинных ресурсов.
Целью данной работы является реализация конфигурируемого компи-

лятора для языка программирования LiteASM. Цель данного языка – упро-
стить низкоуровневую разработку под различные платформы, а именно упро-
стить написание программного кода и решить проблему с каталогизацией
компонентов кода.

Задачами стали:
– проектирование языка программирования LiteASM;
– проектирование конфигурируемого компилятора;
– реализация компилятора.

4

1 Основная часть

В первом параграфе автор сформулировал и спроектировал основные
конструкции языка LiteASM, целью которого стало упрощение низкоуровне-
вого программирования, упрощения перехода с языка ассемблера. К свой-
ствам этого языка относятся:

1. Особая интерпретация численных литералов. Язык позволяет указы-
вать численные литералы в разных системах счисления. По умолчанию
число интерпретируется в десятичной системе счисления. Для указа-
ния числа в двоичной системе счисления необходимо добавить в конец
букву b. Для указания шестнадцатеричного числа необходимо указать
перед числом 0x и/или в конце букву h.

2. Переменные. Переменные объявляются с помощью слова var. Они мо-
гут быть не определены, тогда компилятор заполнит место, выделенное
под эту переменную, нулевыми байтами. Язык не имеет возможности
динамического выделения памяти, поэтому все глобальные переменные
хранятся в исполняемом файле. Отсутствует приведение типов. Так же
стоит упомянуть, что значения локальных переменных могут храниться
в части памяти исполняемого файла, а также в регистрах процессора,
это определяется статическим способом при анализе жизненного цикла
переменной.

3. Функции. Функции объявляются с помощью слова fun, могут иметь
аргументы и возвращаемое значение. В языке отсутствует возможность
переопределения функций и объявления функций с одинаковым именем
и различными аргументами. Так же при определении функции можно
указать модификаторы in и out, которые разрешают или запрещают
соответственно использование непосредственного кода функции вместо
её вызова. Эти же модификаторы могут быть указаны и при вызове
функции.

4. Выражения. В языке поддерживаются основные выражения из других
высокоуровневых языков, такие как циклы (for, while, do...while),
условные ветвления (if...else, switch) и переходы (break, continue,
goto).

5. Возможность импорта файлов, функций и переменных. Функции и пе-
ременные в одном файле не имеют доступа к функциям и перемен-

5

ным из другого файла, пока они не импортированы. Для импорта фай-
ла необходимо указать имя пакета файла и через точку имя файла
(std.console). Для импорта функции необходимо указать имя пакета
файла, в котором она находится, через точку имя файла и имя функ-
ции (std.console.print). Для импорта переменной необходимо ука-
зать имя пакета файла, в котором она находится, через точку имя фай-
ла и через символ # имя переменной (ru.loginov.another#a).

6. Возможность работы с пакетами. Под пакетом здесь мы будем пони-
мать расширяемый маркированный набор файлов. Пакеты решают за-
дачу классификации и каталогизации файлов и исключают коллизию
имён. Имя пакета состоит из строк латинского алфавита, разделяемых
точками.
Программа, выводящая 100 раз фразу "Hello, world" на языке LiteASM

представлена ниже:

package ru.loginov
import std.console.print
import std.console.printInt
import ru.loginov.another#a

var str: byte[1101B] = "Hello, world"

fun main(): int {
for (var i: int = 0; i < 100; i++) {

print(str)
}
printInt(a + 0xA); return 1

}

Очевидно, что код программы значительно проще кода аналогичной програм-
мы на языке ассемблер, и конструкции и спецификации языка легко узнава-
емы для программиста.

Во втором параграфе работы автор строит компилятор с языка LiteASM.
Разработанный компилятор реализован на языке Kotlin [12] и Java [13]. Вы-
бор этих языков обусловлен возможностью работы в условиях различных

6

платформ. Так же использовался инструмент ANTLR4 [14] для генерации нис-
ходящего лексического и синтаксического анализаторов для языка Java. Та-
кой выбор объясняется следующими причинами:
— удобство работы с абстрактным синтаксическим деревом;
— использование единой нотации для описания лексических и синтакси-

ческих анализаторов;
— свободное программное обеспечение;
— предоставление сообщений об ошибках;
— наличие визуальных сред разработки, помогающие при проектировании

и разработки грамматики.
Особенностью построенного компилятора стала возможность опреде-

лять тип компиляции, который может определять способ генерации машин-
ного кода. Например, эта особенность может использоваться алгоритмом ге-
нерации машинного кода для выбора формата генерации файла (например:
COM или EXE).

При проектировании компилятора были определены основные входные
параметры:
— список файлов для компиляции;
— имя архитектуры;
— имя операционной системы;
— тип компиляции (новый дополнительный строковый параметр, который

может не использоваться);
— имя функции, которая представляет собой точку входа в приложение;
— настройки компилятора.

Наличие таких входных параметров подразумевают, что компилятор
должен адаптироваться под определённую платформу с помощью настроек,
и поэтому конструкции языка, такие как типы, операции и функции базовой
библиотеки, будут определены самим пользователем. Базовая библиотека –
это набор функций, которые, как правило, могут компилироваться напря-
мую в машинный код. Этот набор функций может легко расширяться. Так
же операции языка ассемблер и операции, специфичные для определённой
платформы, будут выступать в качестве функций базовой библиотеки. Ес-
ли какая-либо платформа лишена той или иной функции, то компилятор
предоставит возможность написания такой функции. После компиляции по-

7

лучается файл, содержащий бинарный код под определённую платформу,
операционную систему и тип компиляции.

Первым этапом компиляции является лексический и синтаксический
анализ с помощью анализаторов, сгенерированных посредством инструмента
ANTLR4. Лексический анализ необходим для того, чтобы преобразовать набор
символов в значащие последовательности, которые называются лексемами.
Для каждой лексемы строится выходной токен. Токен – это пара объектов:
вид лексемы и её конкретное значение. После проведения лексического ана-
лиза компилятор получает поток токенов. Анализ производится только над
файлами, которые имеют расширение .lasm. Лексический анализатор реали-
зуется Java-классом LiteAsmLexer.

Цель синтаксического анализа – это создание древовидного представ-
ления, которое описывает грамматическую структуру потока токенов. Син-
таксическое дерево – это дерево в котором каждая вершина представляет
операцию, а дочерние вершины – это аргументы этой операции. Синтаксиче-
ский анализатор реализуется классом LiteAsmParser.

Данные классы используются следующим образом:
— input – входящий поток символов;
— val lexer = LiteAsmLexer(CharStreams.fromStream(input)) – созда-

ние объекта класса LiteAsmLexer и проведение лексического анализа
входящего потока символов;

— val parser = LiteAsmParser(CommonTokenStream(lexer)) – создание
объекта класса LiteAsmParser и проведение синтаксического анализа
потока токенов полученного после лексического анализа;

— val result = parser.text() – получение синтаксического дерева для
набора инструкций программы.
При возникновении синтаксической ошибки, пользователь будет проин-

формирован, где встретилась ошибка, но процесс компиляции будет останов-
лен. Пример синтаксического дерева для кода var a: int = 5 (объявление
переменной a и присвоение ей значения, равного 5) приведён на рисунке 1.

8

Рисунок 1 – Пример синтаксического дерева

9

где:
— text – текст программы;
— textLine – строка текста программы;
— testStatement – оператор в строке текста программы;
— variableDeclareAndSet – объявление и определение переменной;
— variableDeclare – объявление переменной;
— null:"var " – последовательность символов, с которой начинается объ-

явление переменной;
— variable – имя переменной;
— type – имя типа переменной;
— expressionStatement – оператор выражения;
— number – число;
— DecNumber – десятичное число.

Следующим этапом компиляции является семантический анализ, кото-
рый включает:
— проверку типов;
— проверку, что все используемые переменные существуют;
— проверку, что все используемые функции существуют;
— проверку, что все используемые операции существуют.

После лексического анализа формируется поток токенов, который под-
вергается синтаксическому анализу. Построенное синтаксическое дерево по-
даётся на вход семантического анализатора. После семантического анализа
получается внутреннее представление.

Перед выполнением семантического анализа компилятор производит
загрузку базовой библиотеки. Это происходит с помощью конфигурационных
файлов, которые определяют имя функции, входящие и выходящие парамет-
ры, их типы, а также машинный код, который будет генерироваться, если эта
функция используется в программе.

Далее происходит частичная проверка типов. Это предполагает, что
проверяется только объявления функций и переменных на то, используют
ли они типы, существующие в языке. Полную проверку типов возможно про-
вести только после генерации внутреннего представления, которое хранит
информацию о том, какие операции и функции, с какими параметрами были
использованы.

10

Далее строится внутреннее представление. Внутреннее представление
является деревом, вершинами которого будет объекты класса CompileUnit,
вершины представляют собой операцию, а дочерние вершины – аргументы
этих операций, имеющие строгий порядок. Объекты класса CompileUnit име-
ют определённую функциональность и классифицируются в соответствии с
ней, а именно:

– MULTI - список операций;
– OPERATION - операция (арифметическая, логическая и т.п.);
– FUNCTION_CALL - вызов функции;
– VARIABLE_DECLARE - объявление переменной (используется для объяв-

ления локальных переменных);
– VARIABLE_USE - использование переменной (как аргумента);
– NUMBER - использование числа (как аргумента);
– REGISTER - использование регистра (как аргумента);
– STRING - использование строкового литерала (как аргумента);
– NONE - отсутствие каких-либо действий (используется как аргумент).

И возможны расширения:
– BASE64 - использование формата base64 [19] для непосредственной за-

писи байтов;
– BYTES - использование массива байт для непосредственной записи;
– CUSTOM - тип для расширения.

После семантического анализа и создания внутреннего представления
для текста программы компилятор выбирает алгоритм генерации машинного
кода, основываясь на выбранной пользователем архитектуре, операционной
системе и типе компиляции. На этом этапе происходит полная проверка ти-
пов, распределение регистров и проверка возможности использования тех или
иных операций и функций. Предложенная версия компилятора предполага-
ет только одну реализацию алгоритма генерации, использующую настройки
компилятора, но пользователь имеет возможность добавлять свои алгоритмы
генерации в зависимости от поставленной задачи. Алгоритм по умолчанию
выглядит следующим образом:

Шаг 1. Анализ внутреннего представления для функции входа.
Шаг 2. Анализ использования локальных переменных и анализ их жизнен-

ного цикла.

11

Шаг 3. Выделение памяти под глобальные и локальные переменные (если
требуется).

Шаг 4. Добавление безусловного перехода на адрес точки входа в программу
(если требуется).

Шаг 5. Создание файла и генерация машинного кода в соответствии с вы-
численными адресами переменных в памяти.

Главной особенностью построенного компилятора является его гибкость
и адаптивность, которые реализованы с помощью настроек. Эти настройки
обеспечивают независимость компилятора от используемой платформы. Это
обеспечивает переносимость компилятора, легкость и прозрачность в про-
граммировании, а это в свою очередь позволяет широко использовать язык
LiteASM и его компилятор для решения широкого спектра задач.

Первая группа настроек компилятора указывается через параметры ко-
мандной строки:
— --settings – путь до файла с настройками;
— --entry-point – имя функции начала, т.е. функции с которой следует

начать выполнять программу;
— --input – пути до файлов для компиляции;
— --output – путь до папки для сгенерированных файлов;
— --architecture – архитектура под которую будет генерироваться код;
— --os – операционная система под которую будет генерироваться код;
— --type – тип генератора для генерации кода.

Для гибкой компиляции машинного кода был создан класс Replaceable,
который определяет в какой набор бит будет генерироваться определённая
операция или регистр. Объект этого класс может задаваться с помощью
нескольких форматов:
— base64 – принимает строку в формате base64 и преобразует её в набор

байт;
— bits – принимает строку в виде двоичного числа и преобразует её в

набор бит;
— bytes – принимает набор чисел, которые интерпретируются как набор

байтов;
— class и method – указывает метод в определённом Java-классе, кото-

рый принимает на вход определённый набор параметров (аргументы

12

операции и контекст компилятора) и возвращает набор бит.
Для определения входных и выходных параметров операции использу-

ется класс Direction, объекты которого задаются следующими форматами:
– #M – Входной аргумент является ссылкой на ячейку в памяти.
– #R – Входной аргумент является любым регистром.
– #R<число> – Входной аргумент является регистром определённого типа.
– #L – Входной аргумент является литералом.
– Остальные комбинации символов интерпретируются как имена реги-

стров.
Вторая группа настроек компилятора, зависящая от платформы, ука-

зывается с помощью текстового файла с определённой структурой в формате
json [20]:

– charset – кодировка строковых литералов;
– header – объект класса Replaceable, который будет генерировать по-

следовательность бит в начале выходного файла;
– trailer – объект класса Replaceable, который будет генерировать по-

следовательность бит в конце выходного файла;
– architecture – имя архитектуры процессора (x86);
– os – имя операционной системы (win);
– type – имя типа компиляции;
– registers – регистры которые существуют на данной платформе:

– name – имя регистра;
– size – размер регистра в байтах;
– types – типы переменных, которые можно записать в регистр;
– kind – тип регистра (представляет собой числовое значение, кото-

рое по-разному интерпретируется разными алгоритмами генера-
ции), может использовать для классификации регистров (исполь-
зуемых в циклах, используемых для локальных переменных и т.д.);

– replace – объект класса Replaceable.
– operations – операции и выражения, которые могут использоваться

компилятором:
– format – описание операции, которое задаёт, какие значение полей

и в каком порядке будут генерировать саму операцию:
– field – имя поля, в котором будет содержаться значение;

13

– replace – объект класса Replaceable;
– required – параметр который указывает обязательность дан-

ного поля.
– list – список операций и выражений, который имеет определён-

ную структуру:
– tag – имя операции или выражения;
– lexeme – нетерминальный символ для операции;
– contract – определяет спецификацию (указание входных и

выходных параметров) операции.
– input – объект класса Direction определяющие входящие

параметры;
– output – объект класса Direction определяющие выходя-

щие значения;
– replace – объект класса Replaceable;
– элементы формата, которые определяют значения полей в

формате операции.
– functions – список функций, совокупность который будет загружена

как базовая библиотека:
– package – имя пакета;
– name – имя функции;
– replace – объект класса Replaceable;
– contract – определяет спецификацию функции:

– input – список типов для входящих параметров;
– output – тип возвращаемого результата.

14

ЗАКЛЮЧЕНИЕ

Для программиста выбор языка и компилятора – непростая задача.
Необходимо учитывать много особенностей не только языка, но и архитек-
туру процессора, особенности операционной системы, состав и архитектуру
аппаратного комплекса. Наблюдаемое разнообразие архитектур, вариантов
и модификаций операционных систем, огромный список внешних устройств
определяет большое количество существующих платформ, что усложняет
проектирование и разработку программных комплексов. Разработчики язы-
ков программирования по-разному решают эти проблемы. В работе предпри-
нята попытка избежать зависимости от архитектуры, операционной системы
и характеристик программного комплекса.

В работе спроектирован и реализован язык программирования целью
которого, является упрощение и прозрачность низкоуровневого программи-
рования, удобство программирования микроконтроллеров, возможность под-
держки широкого спектра существующих платформ, возможность расшире-
ния функций. Этот язык назван LiteASM. И для этого языка реализован кон-
фигурируемый компилятор для генерации кода под множество платформ,
определяемых самим пользователем. Построенный компилятор позволяет, ис-
пользуя единый код, осуществлять программирование большого класса мик-
роконтроллеров с разными архитектурами, характеристиками и возможно-
стями. Цель работы достигнута и все поставленные задачи выполнены.

Дальнейшая динамика этого компилятора связана с оптимизацией внут-
реннего представления и машинного кода, поддержки статических и дина-
мических библиотек, поддержки пользовательских библиотек, расширение
функциональности за счёт поддержки процессоров с явным параллелизмом
операций.

15

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1 Теренс Пратт, Марвин Зелковиц. Языки программирования: разработка
и реализация. — 4-е издание. — Питер, 2002. - 690 с. - Яз. Рус.

2 Гавриков М. М., Иванченко А. Н., Гринченков Д. В. Теоретические осно-
вы разработки и реализации языков программирования. — КноРус, 2013.
— 178 с. - Яз. Рус.

3 Робин Хантер. Основные концепции компиляторов. — М.: Вильямс, 2002.
— 256 с. — Яз. Рус.

4 GCC. [Электронный ресурс]. URL: https://gcc.gnu.org/ (дата обращения:
21.03.2021). - Яз. Англ.

5 Standart C++ [Электронный ресурс]. URL: https://isocpp.org/ (дата об-
ращения: 5.04.2021). - Яз. Англ.

6 mingw-w64 [Электронный ресурс]. URL: http://mingw-w64.org (дата об-
ращения: 21.05.2021). Загл. с экр. – Яз. Англ.

7 Windows [Электронный ресурс]. URL: https://www.microsoft.com/ru-
ru/windows (дата обращения: 9.05.2021). Загл. с экр. – Яз. Англ.

8 Intel oneAPI Toolkits. [Электронный ресурс]. URL:
https://software.intel.com/content/www/us/en/develop/tools/oneapi/all-
toolkits.html (дата обращения: 22.05.2021). Загл. с экр. – Яз. Англ.

9 Intel 64 and IA-32 Architectures Software
Developer Manuals [Электронный ресурс]. URL:
https://software.intel.com/content/www/us/en/develop/articles/intel-
sdm.html (дата обращения: 2.05.2021). - Яз. Англ.

10 IAR Systems. [Электронный ресурс]. URL:
https://www.iar.com/products/free-trials/ (дата обращения: 24.05.2021).
Загл. с экр. – Яз. Англ.

11 Альфред В. Ахо, Моника С. Лам, Рави Сети, Джеффри Д. Ульман. Ком-
пиляторы: принципы, технологии и инструментарий. - 2 изд. - М.: Ви-
льямс, 2008. - 1184 с. - Яз. Рус.

12 Kotlin Programming Language. [Электронный ресурс]. URL:
https://kotlinlang.org/ (дата обращения: 02.05.2021). - Яз. Англ.

16

https://gcc.gnu.org/
https://isocpp.org/
http://mingw-w64.org
https://www.microsoft.com/ru-ru/windows
https://www.microsoft.com/ru-ru/windows
https://software.intel.com/content/www/us/en/develop/tools/oneapi/all-toolkits.html
https://software.intel.com/content/www/us/en/develop/tools/oneapi/all-toolkits.html
https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html
https://software.intel.com/content/www/us/en/develop/articles/intel-sdm.html
https://www.iar.com/products/free-trials/
https://kotlinlang.org/

13 Java. [Электронный ресурс]. URL: https://java.com (дата обращения:
20.03.2021). Загл. с экр. – Яз. Англ.

14 ANTLR. [Электронный ресурс]. URL: https://www.antlr.org/ (дата обра-
щения: 15.05.2021). - Яз. Англ.

15 Белоусов А. И., Ткачев С. Б. Дискретная математика. - М.: МГТУ, 2006.
- 743 с. - Яз. Рус.

16 А. Ахо, Дж. Ульман. Теория синтаксического анализа, перевода и ком-
пиляции. Т. 1. - Пер. с англ. В. Н. Агафонова под ред. В. М. Курочкина.
- М.: Мир, 1978. - 309 с.

17 LLVM. [Электронный ресурс]. URL: https://llvm.org/ (дата обращения:
20.05.2021). - Яз. Англ.

18 Clang. [Электронный ресурс]. URL: https://clang.llvm.org/ (дата обраще-
ния: 22.05.2021). - Яз. Англ.

19 RFC4648 [Электронный ресурс]. URL:
https://datatracker.ietf.org/doc/html/rfc4648 (дата обращения:
17.05.2021). - Яз. Англ.

20 JSON [Электронный ресурс]. URL: https://www.json.org/ (дата обраще-
ния: 6.05.2021). - Яз. Англ.

17

https://java.com
https://www.antlr.org/
https://llvm.org/
https://clang.llvm.org/
https://datatracker.ietf.org/doc/html/rfc4648
https://www.json.org/

	ВВЕДЕНИЕ
	Основная часть
	ЗАКЛЮЧЕНИЕ
	СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

