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Введение. Математикам давно известно уравнение Лёвнера. Оно широко
применялось в единичном круге, а также для отображения в полуплоскости.

Данная работа посвящена теории плоских процессов роста Левнера. Со-
средоточимся на одной стороне теории, а именно на хордовом уравнении
Левнера. Оригинальная теория Левнера - это вариант, в настоящее время,
радиального уравнения Левнера, которое он ввел для решения случая n = 3
Гипотезы Бибербаха в 1923 году.

Работа имеет 4 основных раздела и приложение. В первых двух гла-
вах представлены основные результаты, которые были получены классиками
комплексного анализа и опубликованы в книге Игоря Александровича Алек-
сандрова "Параметрические продолжения в теории однолистных функций"1.
В ней работа проводилась с отображением верхней полуплоскости на полу-
плоскость с разрезом.

Сейчас специфика несколько иная: речь идет об отображении полуплос-
кости с разрезом на полуплоскость и в уравнение Лёвнера внесена 2, как
коэффициент. Именно этому и посвящены 3 и 4 главы магистерской работы.

Пусть λ : [0,+∞)→ R- ведущая функция хордового процесса Левнера. В
работе Zhang, H., Zinsmeister, M. 2 найдены новые условия на λ, из которых
следует, что процесс порождается простой кривой. Этот результат улучшает
первый результат Линда, Маршалла и Роуда и, в частности, дает новые ре-
зультаты о случае λ(t) = cWb(t), где Wb является функцией Вейерштрасса -
Гёльдера −1/2.

В приложении представим примеры построения плоскости, которая опи-
сана в главе 2, как оценка коэффициентов разложения функции.

Нами были поставлены следующие задачи:
1. Изучить историю вопроса и ознакомиться с результатами, опубликован-

ными в книге "Параметрические продолжения в теории однолистных функ-
ций"И.А. Александрова.

2. Проанализировать полученные результаты.
3. Рассмотреть вопросы, вызывающие интерес математиков в настоящее

время, с точки зрения уравнения Лёвнера для полуплоскости.
1Александров, И.А. Параметрические продолжения в теории однолистных функций - Москва : Наука,

1976. - 343 с.
2Zhang, H., Zinsmeister, M. Local analysis of Loewner equation - 2019
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Основное содержание работы. Қлассом H называется множество всех
голоморфных однолистных в Π+

ς функций w = f(ς) , принимающих значения
в Π+

ς , и нормированных условием lim
ς−→∞

(f(ς)− ς) = 0, ς ∈ Π+
ς .

Обозначим через H̃ совокупность всех функций f(ς) ∈ H, отображающих
Π+
ς на (односвязные) области без внешних в Π+

w точек, получающиеся из Π+
w

проведением конечного числа жордановых разрезов (образующих попарно
несвязные деревья, каждое из которых имеет один корень на оси Imw = 0).

Теорема 1. Пусть f(z) ∈ H̃. Тогда существуют t0 ∈ H̃ и вещественная
функция u : u = u(t), непрерывная везде на [0, t0], за исключением конечного
числа точек разрыва первого рода, такие, что f(z) = Φ(z, t0).

Здесь под ω = Φ(z, t0) понимается интеграл уравнения

dω

dt
=

1

u− ω
, (1)

удовлетворяющий начальному условию ω|t=0 = z, z ∈ Π+
z .

Условимся впредь функции u(t) называть допустимыми на [0, t0]. Клас-
сом HL называется совокупность всехфункций f(z) ∈ H, допускающих при
достаточно больших R,R > 0, в полуокрестности
K+
R = {z : |z| > R, z ∈ Π+

z } точки z =∞ со разложение в ряд

f(z) = z +
c1
z

+
c2
z2

+ . . . (2)

Через Hr
L обозначим подкласс всех функций из HL с вещественными ко-

эффициентами в разложении (2).

Теорема 2. Пусть t0, t0 > 0, — произвольное фиксированное число и
u = u(t) — вещественная кусочно непрерывная функция на [0, t0] без точек
разрыва второго рода. Тогда решение уравнения (1) с начальным условием
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ω|t0 = z представляет функцию ω = Φ(z, t), которая при каждом t ∈ (0, t0]

как функция z, z ∈ Π+
z , принадлежит классу Hr

L.
3

Далее изучим множества значений коэффициентов разложения функций
f(z) = z + c1z

−1 + c2z
−2 + . . . классов HL, H

r
L. Здесь будет выяснена особая

роль коэффициента c1, функции f(z), оказывающего своей величиной регули-
рующее влияние на изменение других коэффициентов этой функции, а также
на изменение некоторых простейших функционалов, характеризующих пове-
дение функции f(z) внутри ее области определения. В зависимости от c1.
(иногда в зависимости от c1, c2) для других коэффициентов указываются
множества их значений, либо мажоранты, либо достаточно емкие миноранты
этих множеств.

Қлассом H1 назовем подкласс класса H всех функций f(z), для которых
при z −→∞, z ∈ Π+

z , существует конечный предел

lim
z−→∞

z[f(z)− z] = {f}1

Теорема 3. На классе Hr
L(c1), c1 < 0 функций

f(z) = z +
c1
z

+
c2
z2

+ . . . (3)

имеют место оценки

c3 ≤
c22
c1
− 1

2
c21, (4)

c5 ≤
c42
c31
− 1

2
c31 − 2, 82c22, (5)

3Селляхова, Т.Н., Соболев, В.В. О взаимном изменении величин log f ′(z) и f(z) для одного класса
функций, однолистных в полуплоскости - Тр. зонального объединения математиких ка-федр пединсти-
тутов Сибири, Красноярск, 1, 1972, 176-192 с.
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Оценка (4) точная, равенство в ней реализуется функциями

f0(z) = u0 + [(z − u0)2 + 2c1]
1\2 ∈ Hr

L(c1), u0 = cost, Imu0 = 0. (6)

Следующая часть работы посвящена основным уравнениям Левнера.
Пусть H - верхняя полуплоскость, H = {z = x+ iy ∈ C; y > 0}.

Предположим, что γ : [0, T ]→ H̄ непрерывно и инъективно с γ(t) ∈ H, t ∈
(0, T ], γ(0) = 0. Запишем Kt = γ[0, t] и Ht = H\Kt. Это растущее замкнутое
множествоKt называется оболочкой процесса Левнера. Из теоремы Риманова
отображения, существует единственное конформное отображение gt : Ht →
H, удовлетворяющее следующему разложению в ∞:

gt(z) = z +
c(t)

z
+O

(
1

z2

)
, (7)

с c(t) ∈ R+, и gt можно расширить по принципу отражения Шварца на
C\Kt ∪ s(Kt) голоморфно, где s(z) = z̄.

Поскольку функция t 7→ c(t), называемая емкостью, является непрерыв-
ной и возрастает от 0 до ∞, мы можем параметризовать γ(t) так, чтобы
c(t) = 2t. Можно доказать, что предел λ(t) = lim

z∈Ht,z→γ(t)
gt(z) существует и

лежит в R. Более того t 7→ λ(t) непрерывно, а t → gt(z) удовлетворяет хор-
довому уравнению Левнера:

ġt(z) =
2

gt(z)− λ(t)
, g0(z) = z, z ∈ H. (8)

Функция λ называется управляющей функцией процесса. λ(0) = 0, по-
скольку g0 - тождественное отображение.

Рассмотрим уравнение Левнера с управляющей функцией cWb, где c -
положительная константа, а Wb - функция Вейерштрасса

Wb(t) =
∞∑
n=1

cos(bnt)√
bn

(9)
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Локальное поведение функции Вейерштрасса изучалось давно. Эта функ-
ция имеет некоторые общие свойства с броуновским движением. Уже дока-
зано, что

||Wb||1/2 ≤
b√
b− 1

+
2

1− 1√
b

= C(b) ∼
√
b, b→ +∞ (10)

Если c < 4/C(b) ∼ 4/
√
b, то уравнение Левнера, управляемое cWb, гене-

рируется квазиконформной кривой, в частности простой кривой.

Теорема 4. ∀l0 > 1,∃C > 0, если c < C, то уравнение Левнера с управляю-
щей функцией cWb генерируется квазиконформной кривой, когда b > l0.

Заключение. В данной работе рассмотрены вопросы и результаты исследо-
ваний, опубикованых в книге Игоря Александровича Александрова "Пара-
метрические продолжения в теории однолистных функций". А так же изче-
ны вопросы, которые вызывают интерес математиков в настоящее время, с
точки зрения уравенения Лёвнера для полуплоскости.

В приложении А представлен пример построения плоскости, которая опи-
сана как оценка коэффициентов разложения функции. Все построения реали-
зованы с помощью кроссплатформенной динамическойматематической про-
граммы для всех уровней образования - GeoGebra 3D.
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