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ВВЕДЕНИЕ

Целью настоящей работы является исследование и сравнение эффек-

тивности различных методов и моделей детекции аномалий в данных, соби-

раемых системой мониторинга на основе Prometheus, развёрнутой в условиях

Kubernetes кластера, а также реализация сервиса для автоматической детекции

аномалий.

Основными задачами работы являются:

— разворачивание и настройка работоспособного Kubernetes кластера на

локальной вычислительной машине;

— установка системы мониторинга на основе Prometheus;

— установка в кластер инструментов для хаос-тестирования;

— создание и проведение хаос-экспериментов для получения аномалий в

данных;

— экспорт метрик из базы данных Prometheus, а также разметка аномаль-

ных значений;

— создание и обучение различных моделей для обнаружения аномалий в

данных;

— получение предсказаний от различных моделей на основе тестовых дан-

ных и сравнительная оценка их работы;

— реализация сервиса для автоматической детекции аномалий с использо-

ванием моделей, исследованных ранее.

Актуальность работы обусловлена сильно растущим в последние годы

рынком облачных решений и, как следствие, возрастающими потребностями

мониторинга их состояния для повышения надёжности создаваемых систем.

При этом классические методы мониторинга: алертинг на основе статичных

правил и триггеров, визуальное наблюдение за графиками и показателями не

дают должного результата в тех случаях, когда причина проблемы является

слишком комплексной и сложной для отслеживания. Для таких случаев ис-

пользуются различные методы детекции аномалий, которые при правильном

использовании дают отличные результаты там, где классические способы мо-

ниторинга бессильны, а автоматический поиск аномалий даёт возможность

своевременно реагировать на неполадки в приложениях и инфраструктуре.

Особенно это актуально в приложениях на микросервисой архитектуре, где на

первый план выходит не надёжность физических компонентов, а устойчивость
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сети и элементов системы к высоким нагрузкам. Поэтому для мониторинга в

рамках исследования была взята система на основе Prometheus, развёрнутая

в кластере Kubernetes, одновременно являющаяся также примером типичного

микросервисного приложения.
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1 Общее описание задачи

Описать поставленную задачу можно как исследование и сравнение раз-

личных моделей для обнаружения аномалий в данных, полученных из систе-

мы мониторинга на основе Prometheus, развёрнутой в Kubernetes кластере и

построение сервиса для автоматического обнаружения аномалий с использо-

ванием исследуемых моделей.

План выполнения поставленной задачи можно сформулировать следую-

щим образом: необходимо установить кластер Kubernetes, развернуть в нём

систему мониторинга на основе Prometheus, собрать данные при нормальной

работе кластера, развернуть и запустить систему для хаос-тестирования кла-

стера, собрать данные с полученными в ходе хаос-экспериментов аномалиями,

выгрузить данные из базы данных на локальную машину и разметить их (от-

метить аномальные участки), обучить различные модели для детекции анома-

лий на обучающем наборе данных, предсказать с помощью натренированных

моделей аномальные участки на тестовых данных и сравнить предсказанные

значения с эталонной разметкой. Затем следует построить веб-приложение, ко-

торое будет экспортировать данные из Prometheus, выявлять в них аномалии,

и при наличии таковых подавать сигнал об этом в виде электронного письма.
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2 Установка окружения для работы кластера

Для использования системы мониторинга, выбранной для этой работы,

необходим установленный Kubernetes кластер. Для установки полноценного

Kubernetes кластера нужно использовать выделенный сервер, но из-за ограни-

чения ресурсов это не было реализовано в ходе работы.

Так как кластер планировалось использовать исключительно для тесто-

вых действий, в качестве платформы для установки кластера был выбран пакет

Microk8s.

На момент создания окружения для работы над проектом Microk8s ста-

бильно работал только на операционной системе Linux. Для того, чтобы уста-

новить данный инструмент, имея в распоряжении машины только с операци-

онной системой Windows, требовалось использовать виртуальную машину на

базе ОС Linux.

Для этого был установлен бесплатный инструмент VMware Workstation

16 Player — программный инструмент, позволяющий использовать дополни-

тельную операционную систему в качестве виртуальной машины.

В качестве операционной системы была выбрана Ubuntu 20.04.2 LTS —

бесплатный дистрибутив GNU/Linux, основанный на Debian GNU/Linux. В ка-

честве виртуальной машины операционная система была установлена из сво-

бодно распространяемого iso образа [1]. Далее был установлен пакет Microk8s

с помощью пакетной системы snap.

С помощью Microk8s был развёрнут локальный Kubernetes кластер, со-

стоящий из одного узла. Также был использован аддон microk8s dashboard

для управления кластером через графический интерфейс. Управление ресур-

сами и объектами кластера через командную строку осуществлялось через

kubectl— инструмент командной строки для управления кластерами Kuberne-

tes. В данном случае был использован kubectl, поставляемый вместе с Microk8s.

Эта версия инструмента может быть вызвана через команду microk8s kubectl [2].

Несмотря на использование специфичных технологий для развёртки Ku-

bernetes кластера, методы и программные решения, описанные в данной рабо-

те, могут применяться к любому Kubernetes кластеру: развёрнутому локально

или в облаке.
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3 Установка системы мониторинга

В данной работе используется Kubernetes — открытое программное обес-

печение для оркестровки контейнеризированных приложений — автоматиза-

ции их развёртывания, масштабирования и координации в условиях кластера.

Разработан компанией Google [3]. Kubernetes был выбран благодаря широкому

распространению в области управления контейнеризированными решениями.

Исследуемое приложение для мониторинга, благодаря контейнеризации,

основано на микросервисной архитектуре, т.е. каждый компонент приложения

помещается в отдельный контейнер, слабо связанный с окружением и другими

контейнерами преимущественно по HTTP протоколу. Такой элемент цельного

приложения называется микросервисом.

Объекты Kubernetes, также именуемые ресурсами, имеют декларативное

описание в формате YAML. При этом создание примитивных ресурсов также

можно производить императивным путём с помощью kubectl [4].

В качестве исследуемой базовой системы мониторинга был выбран Pro-

metheus — бесплатное программное обеспечение, сочетающее в себе систему

сбора метрик, базу данных временных рядов, систему алертинга — отслежива-

ния метрик в реальном времени по определённым правилам для оповещения

о данных, представляющих интерес или опасность для стабильной работы

отслеживаемого приложения. Также Prometheus предоставляет простой веб-

интерфейс для выполнения запросов к базе данных и отслеживания оповеще-

ний, а также конфигураций.

Prometheus работает по принципу активного сбора данных с приложений

по HTTP протоколу. Для этого наблюдаемое приложение должно отдавать мет-

рики в особом формате по адресу, известному для системы мониторинга. На

практике для наиболее распространённых случаев сбора различных метрик не

модифицируют само приложение или инфраструктуру, о которой необходимо

собирать информацию, а используют так называемые экспортеры — приложе-

ния (часто — микросервисы), которые собирают необходимую информацию и

выставляют её в виде метрик, доступных Prometheus для чтения, по опреде-

лённому эндпоинту — URL-адресу с определённым URL-путём. Затем Проме-

тей конфигурируется таким образом, чтобы считывать информацию с данного

эндпоинта с определённым временным интревалом и параметрами, также пе-

редающимся в составе адреса. Такая конфигурация называется таргетом.
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Для управления Prometheus в среде Kubernetes был использован Prome-

theus Operator. Оператор обеспечивает собственное развертывание Kubernetes

и управление Prometheus и соответствующими компонентами мониторинга.

Цель проекта — упростить и автоматизировать настройку стека мониторинга

на основе Prometheus для кластеров Kubernetes.

Оператор Prometheus включает, помимо прочего, следующие функции:

настраиваемые ресурсы Kubernetes для развертывания и управления Prome-

theus, Alertmanager и связанными компонентами; упрощенная конфигурация

развертывания — вся настройка Prometheus происходит через особый Prome-

theus CR (Custom Resourse) — декларативное описание характеристик созда-

ваемого ресурса; целевая конфигурация Prometheus: автоматическое создание

целевых конфигураций мониторинга (таргетов) при помощи Service Monitor

CR [5].

Для целей исследования, помимо стандартных настроек, через Prome-

theus CR были сделаны следующие настройки для использования Прометея:

при помощи установки параметра retention: 90d срок хранения метрик во

внутренней базе данных увеличен с 15 до 90 дней; параметр replicas изменён

с 2 до 1 для использования только одного экземпляра Prometheus, работающе-

го одновременно, для экономии ресурсов виртуальной машины, в частности —

дискового пространства для исключения дублирования хранимых метрик. Для

исследования в рамках данной работы были установлены следующие экспор-

теры: blackbox-exporter, kube-state-metrics, node-exporter.

Для визуального отображения данных, например в виде графиков или

счётчиков, было выбрано веб-приложение Grafana, которое позволяет созда-

вать настраиваемые доски с панелями для отображения информации по запро-

су из базы данных.

Также в качестве дополнительных сервисов были установлены alertmana-

ger и prometheus-adapter. Alertmanager обрабатывает предупреждения, отправ-

ленные клиентскими приложениями, такими как сервер Prometheus. Alertma-

nager и prometheus-adapter не были использованы в данной по прямому назна-

чению и были установлены в качестве дополнительной нагрузки на кластер,

а также выполняли роль тестовых приложений. Alertmanager был установлен

в высокодоступном (High Availability) режиме, поэтому сервис был продубли-

рован два раза.
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При установке компоненты системы мониторинга были установлены ав-

томатически в так называемые поды (англ. pod — модуль) — абстрактные ресур-

сы Kubernetes, которые могут содержать один или несколько связанных между

собой контейнеров. При этом контейнеризированные приложения внутри пода

делят между собой его ресурсы — хранилище, сеть, порты и т.п.

Для установки приложений в Kubernetes используются развёртывания

(англ. deployment), которые содержат необходимую информацию для создания

пода с приложением. Разновидностью развёртывания является daemonset, ко-

торый отличается тем, что разворачивает поды с экземплярами приложений на

каждом из доступных узлов, при том что deployment по умолчанию использует

для этого только один узел.

Также для успешного функционирования описанных выше компонентов

системы требуется создать ресурс сервис (service) для каждого из них. Сервис

позволяет поду взаимодействовать с внешним миром и другими подами пу-

тём присваивания ему внутреннего или внешнего IP адреса и использования

определённых портов контейнерами внутри него. Помимо сервисов, для пра-

вильной работы всех компонентов системы требуются другие ресурсы, такие

как роли (для получения разрешения от кластера на использование потенци-

ально уязвимых ресурсов), сервис-аккаунты, сервис-мониторы и т.д.

Для развёртывания вышеперечисленных ресурсов в кластере необходимо

описание их свойств в декларативной форме в формате YAML и последующее

применение их к Kubernetes через команду kubectl apply или через веб-

интерфейс кластера. Из-за большого количества файлов с описанием ресурсов

было решено использовать пакетный менеджер Helm.

Таким образом, для развёртывания системы мониторинга, согласно до-

кументации Helm, были созданы шаблоны необходимых файлов и описаны

параметры установки в файле values.yaml. Шаблоны, а также файл с пара-

метрами и прочие вспомогательные файлы, помещённые в определённые ди-

ректории, выстроенные в правильной иерархии, называются helm-чартом [6].

Основа для использованных шаблонов была взята из открытого репозитория

kube-prometheus-stack [7].
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4 Развёртывание и запуск хаос-тестирования

Хаос-тестирование — это дисциплина проведения экспериментов над про-

граммной системой в производственной среде с целью создания уверенности

в способности системы противостоять неожиданным условиям. Чаще всего

такое тестирование применяется в условиях кластера для тестирования устой-

чивости микросервисных приложений, а также инфраструктуры кластера в

целом.

В данной работе инструменты хаос-тестирования были использованы

для искусственного создания аномалий в данных мониторинга. В качестве про-

граммного обеспечения для создания хаос-экспериментов был выбран Chaos

Mesh — решения для chaos engineering, созданное специально для использова-

ния в условиях кластера Kubernetes [8].

Chaos Mesh позволяет создать эксперименты для тестирования, отсле-

живать ход их выполнения и управлять ими, в том числе и с использованием

встроенного веб-интерфейса. Для целей исследования были созданы экспери-

менты нескольких типов: pod kill, pod failure, stress test, network loss.
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5 Экспорт и разметка данных

Prometheus поддерживает экспорт данных в целях резервного копирова-

ния. С помощью определённой команды можно получить доступ к контейнеру

из пространства вне кластера через указанный порт, осуществляя так назы-

ваемый «проброс портов» — закрепление номера порта localhost за портом

соответствующего пода. Затем, пройдя по определённому URL-адресу, вызы-

вается API Prometheus, после чего в файловой системе контейнера создаётся

резервная копия данных, которую её можно выгрузить на локальную машину.

В ходе исследования было решено отказаться от JSON в пользу формата

данных CSV. Чтобы выгрузить данные и сразу конвертировать их в выбран-

ный формат, был использован скрипт, написанный на языке Python, который

обращался Prometheus с помощью специального языка запросов PromQL, а

затем записывал результат в стандартный канал вывода в формате CSV [9].

Из-за специфики данного скрипта и языка PromQL использование од-

ной команды позволяет получить только один временной ряд. Но так как для

обучения и тестирования моделей для детекции аномалий требуются, как пра-

вило, сотни временных рядов из нескольких метрик, то был написан скрипт

на языке Shell, последовательно вызывающий предыдущую программу с раз-

личными PromQL запросами для выгрузки данных с определённой агрегацией

и за необходимый промежуток времени.

Выбранные метрики отражают загрузку центрального процессора основ-

ного контейнера в поде alertmanager-main-0, использование памяти этим же

контейнером, а также общее число ошибок с кодом 404 в Kubernetes API соот-

ветственно. Хаос-тестирование, в частности эксперименты stress test и network

loss, воздействовали на кластер так, что в моменты их воздействия в выше-

приведённых метриках наблюдался резкий рост значений.

Разметка данных производилась в полуавтоматическом режиме. Для пер-

воначальной разметки был написан скрипт, который помечал ряд данных как

аномальный, если рост использования процессора в этот момент превосходил

некий установленный порог. Меткой являлось дополнительное поле в CSV

файле, именуемое anomaly. Значение 0 данного поля указывало на отсутствие

аномалии в этой точке, тогда как 1 помечало ряд как аномальный. После ра-

боты программы разметка просматривалась и корректировалась вручную.

11



6 Обучение, применение и сравнение моделей детекции аномалий

Далее в ходе работы размеченные данные использовались для обучения и

оценки моделей обнаружения аномалий. Были выбраны такие методы класси-

фикации аномальных данных, как Z-оценка, метод опорных векторов [10, 11],

смесь нормальных распределений [12, 13] и градиентный бустинг [14, 15].

В начале алгоритм считывает из CSV файлов обучающие тестовые дан-

ные, разделяя содержимое таблиц на массив значений и массив меток для

каждого набора данных.

Вычисление Z-оценки представлено классом ZScoreModel. Метод клас-

са z_score вычисляет количество стандартных отклонений для точки данных,

подающейся на вход — её z-оценку [16]. Метод класса is_anomaly возвращает

булево значение true, если z-оценка точки выше порога, обозначенного кон-

стантой MAX_Z_SCORE. Метод класса anomaly_prediction проходит по всем

значениям из массива, поступающего на вход функции, и формирует массив

предсказанных меток на основе вычисленных ранее значений.

В основной программе создаётся объект ZScoreModel, а затем вызыва-

ется функция anomaly_prediction. По возвращённым из метода значениям и

эталонной разметке строится ROC-кривая, а также вычисляется AUC значе-

ние, которые будут отображены в отдельном окне после вычисления оценок

всех моделей [17].

Оставшиеся модели были взяты из библиотеки sklearn. Также были

использованы взятые из неё функции для вычисления TPR и FPR значений

для построения ROC-кривой и функция вычисления AUC для этой кривой.

В результате с помощью библиотеки matplotlib строится график, на-

глядно показывающий эффективность каждого метода. Интерпретировать его

следует следующим образом: чем больше площадь фигуры, образованной

ROC-кривой для определённого метода детекции аномалий (т.е. AUC), тем

больше его точность на тестовых данных [18].

12



7 Сервис для автоматической детекции аномалий

На основе исследованных моделей для детекции аномалий в ходе работы

был создан сервис для автоматического распознавания аномалий и сигнализи-

рования в случае их обнаружения. Смысл работы такого приложения в том,

выявлять аномалии в данных, получаемых из Prometheus в реальном време-

ни, и подавать сигнал при их обнаружении, в частности отсылать письмо по

электронной почте и отражать текущий статус на веб-странице. Сервис был

реализован на языке Python. Так как целью было создание легковесного и

простого сервиса, для основы веб-приложения был взят фреймворк Flask [19].

Содержимое основного модуля программы начинается с инициализа-

ции объекта Flask— главного объекта веб-приложения, а также переменных

current_data, которая хранит данные, собранные для выявления аномалий, и

enabled_models, хранящую объекты моделей машинного обучения, которые

должны быть задействованы для обнаружения аномалий. Следом создаётся

словарь anomalies_detected для хранения статуса детекции в будущем.

Следующим шагом загружается информация из конфигурационного фай-

ла config.yaml и сохраняется в оперативной памяти в виде словаря, при этом

некоторые значения заносятся в отдельные переменные для удобства исполь-

зования. Затем из CSV файла выгружается информация для обучения моделей

детекции. На основании этих данных обучаются модели для детекции анома-

лий. При этом объект, содержащий очередную модель, инициализируется и

добавляется в список enabled_models только тогда, когда соответствующий

параметр конфигурации имеет значение true.

Каждый класс для взаимодействия с моделями определённого вида по-

строен по схожему принципу: он содержит конструктор, который принимает

на вход тренировочные значения и метки, а затем сразу создаёт и обучает

модель. Также каждый класс имеет метод predict, используя который можно

получить оценку значений, передающихся в качестве аргумента, на предмет

наличия аномалий в тех или иных точках данных. Метод возвращает массив

меток, предсказанных моделью детекции аномалий.

Класс, позволяющий использовать метод z-оценки, взят практически без

изменений из аналогичного класса в программе по оценке моделей детекции.

Остальные классы модуля models.py не различаются по внутренней структу-

ре.
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После инициализации моделей детекции с помощью Python-библиотеки

threading в отдельном потоке запускается метод scrape_metrics. Это сде-

лано для того, чтобы функция выполнялась во время работы приложения по-

стоянно и независимо от главного потока, так как она содержит вызов метода

time.sleep, который в противном случае приостанавливал бы работу всего

приложения [20].

Сама функция scrape_metrics представляет собой «бесконечный» цикл,

в процессе выполнения которого с помощью библиотеки requests вызывается

API Prometheus, возвращающее информацию о данных по результатам выпол-

нения запроса к БД, после чего формируется кортеж, помещающийся в список

current_data.Затем запускается функция prediction для обновления стату-

сов детекции аномалий. После этого поток приостанавливает работу на время,

указанное в конфигурации.

Функция prediction отвечает за формирование словаря, который содер-

жит следующие поля: булево поле anomaly принимает значение True, если в

текущих данных обнаружена аномалия; поле time отражает время последне-

го обновления данного списка; поле models содержит список моделей с их

статусами и именами. Также в этой функции находится логика по отправке

электронного письма при обнаружении аномалии.

Функция create_email формирует электронное письмо по заданному

шаблону и вызывает функцию send_email, которая, используя библиотеку

smtplib, отсылает по заданным в email-конфигурации реквизитам сформиро-

ванное на предыдущем шаге письмо [21].

Стандартным методом проверки статуса детекции аномалий в данном

сервисе является веб-страница, отражающая последние результаты работы мо-

делей. Страница была создана с использованием технологии Bootstrap 4 для

упрощения работы со стилями [22], Jinja2 в качестве шаблонизатора, постав-

ляющегося вместе с Flask, для переноса данных из Python на HTML стра-

ницу. Загрузка страницы осуществляется с помощью так называемого роу-

та — специальной сущности Flask, которая закрепляет за определённым URL

какую-либо логику, по результатам выполнения которой возвращается HTML

страница.
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ЗАКЛЮЧЕНИЕ

В ходе работы был развёрнут Kubernetes кластер на локальной виртуаль-

ной машине, установлена система мониторинга на основе Prometheus, развёр-

нута система хаос-тестирования и проведены хаос-эксперименты для получе-

ния аномалий в данных мониторинга. Также были написаны программы для

экпорта метрик из базы данных Prometheus, разметки аномальных значений

на них. Были созданы и обучены различные модели для детекции аномалий и

проведён сравнительный анализ их работы. На основе данных моделей было

создано веб-приложение для автоматического обнаружения аномалий в дан-

ных в режиме реального времени, а также сигнализации об их появлении в

данных.

В результате сравнения различных моделей распознавания аномалий бы-

ло выяснено, что на данных, подобных тем, что взяты в ходе работы, лучшую

эффективность в обнаружении аномалий показывает модель машинного обу-

чения, основанная на градиентном бустинге.

Также результатом работы является образец легковесного сервиса для

автоматического обнаружения аномалий в данных, экспортируемых из Prome-

theus. Данное решение можно использовать для систем мониторинга, развёр-

нутых на любом Kubernetes кластере.
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