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Дифференциальное уравнение Левнера было введено Чарльзом (Кар-
лом) Левнером в 1923 году в работе [1] для изучения свойств однолистных
аналитических функций, заданных в единичном круге D, а именно для
доказательства гипотезы Бибербаха [2]. Оригинальная идея Левнера за-
ключается в рассмотрении аналитических отображений единичного круга
D на комплексную плоскость с разрезом вдоль некоторой простой кривой
(стремящейся к бесконечно удаленной точке, так что ее дополнение в C
является односвязной областью) и описании этих отображений с помощью
дифференциального уравнения.

В последние годы возрос интерес к хордовому уравнению Левнера для
функций, заданных в верхней полуплоскости H. Предположим, что разрез
Γ, параметризованный функцией γ(t), t ≥ 0 расположен в верхней полу-
плоскости H, за исключением начальной точки γ(0), лежащей на веще-
ственной оси R. Введем обозначение Γ(t) = {γ(t), t ∈ [0, t]}. Существует
единственная конформная функция g(z, t), отображающая область H\Γ(t)

на H, такая что в окрестности бесконечно удаленной точки справедливо
разложение

g(z, t) = z +
c(t)

z
+O(|z|−2).

Параметризацию кривой γ(t) можно выбрать таким образом, что c(t) = 2t.
Тогда отображения g(z, t) найдется непрерывная вещественная функция
λ(t), такая что справедливо

dg(z, t)

dt
=

2

g(z, t)− λ(t)
, g(z, 0) = z, t ≥ 0. (1)

Уравнение (1) называется хордовым дифференциальным уравнением
Левнера. Функция λ(t), так же как и в случае с радиальным уравнением
Левнера служит управлением в уравнении (1). Заметим также, что λ(t)

является образом точки γ(t) при отображении g(z, t).
Обратно, уравнение Левнера (1) имеет решение для произвольно вы-

бранной непрерывной вещественной функции λ(t), которое для каждого
фиксированного значения t ≥ 0 конформно отображает связное подмно-
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жество верхней полуплоскости H на H, однако указанное подмножество
можно представить как верхнюю полуплоскость за исключением некото-
рой простой кривой Γ, только при “достаточно хорошем” управлении λ(t).

Известно лишь несколько управляющих функций, допускающих инте-
грирование уравнения (1). В работе [3] авторы нашли точные решения
уравнения (1) для: λ(t) = ctβ и λ(t) = c(1 − t)β, где c - вещественная
постоянная, β = 0, 1/2, 1.

В [4] авторы находят решение уравнения Левнера с экспоненциальной
управляющей функцией A(et − 1).

Обратная задача заключается в отыскании управляющей функции в
уравнении Левнера по заданному разрезу в верхней полуплоскости H. Мы
отсылаем читателя к работе [5] где такая задача была решена для сегмента
окружности в H, касающегося R в начале координат. Этот результат был
обобщен в работе [6] для степеней указанного сегмента, а в работе [7] - для
кривых близких к нему. В работе [5] было показано, что сегмент окруж-
ности единичного радиуса с центром в точке i соответствует управляющей
функции λ(t) = 3α(t)+2

√
−α(t)π, где α = α(t) - алгебраическая функция,

удовлетворяющая уравнению

α(3α + 4
√
−απ) = −6t, t ≥ 0.

Подобная задача для сегмента окружности в H, ортогонального к веще-
ственной оси R была рассмотрена в работе [8].

Если Γ - множество, представляющее собой объединение простых кри-
вых, то имеет место уравнение

∂g(z, t)

∂t
=

n∑
k=1

2µk
g(z, t)− λk(t)

, g(z, 0) = z, 0 ≤ t ≤ T, z ∈ H \ Γ[0, T ],

где λk : [0, T ] → R - кусочно-непрерывные управляющие функции, а µk,
k = 1, . . . , n - положительными числа, такие что

∑n
k=1 µk = 1.
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Рассмотрим случай когда Γ представляет собой объединение двух (n =

2) кривых и µ1 = µ2 = 1
2 . Таким образом, мы будем рассматривать уравне-

ние Левнера

∂g(z, t)

∂t
=

2∑
k=1

1

g(z, t)− λk(t)
, g(z, 0) = z, 0 ≤ t ≤ T, z ∈ H \ Γ[0, T ].

(2)
Рассмотрим уравнение Левнера (2) с составными управляющими функ-

циями λ1 и λ2, λ1 = −λ2, когда

λ2(t) =

0, 0 ≤ t < t0,

A, t0 ≤ t ≤ T,
(3)

и

λ2(t) =

0, 0 ≤ t < t0,

A
√
t− t0, t0 ≤ t ≤ T,

(4)

для произвольных значений параметровA > 0 и t0 > 0 и некоторого T > t0.
В главе 2 доказаны следующие теоремы, в которых уравнение (2) ре-

шено для управляющих функций, заданных (3), (4).

Теорема 0.1. Существует T > t0, для которого обобщенное дифференци-
альное уравнение (2) с управляющими функциями заданными (3) имеет
решение w = g(z, t) на [0, T ]. На интервале [0, t0], g(z, t) =

√
z2 + 4t, а на

интервале [t0, T ], w = g(z, t) удовлетворяет уравнению

w2−z2−A2 log
w2

z2 + 4t0
= 4t, g(z, t0) =

√
z2 + 4t0, z ∈ H\ [0, i2

√
t0], (5)

где непрерывные ветви логарифма logw и log z вещественны при поло-
жительных w и z. Функция g(z, T ) отображает H \ Γ на H, где Γ есть
объединение кривых:
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(i) Если A > 2
√
t0, то Γ = ∪2k=0Γk, где Γ0 = [0, 2i

√
t0], Γ2[0, T ] - кривая,

растущая из точки
√
A2 − 4t0 и ортогональная вещественной оси R в этой

точке, Γ1[0, T ] симметрична Γ2[0, T ] относительно мнимой оси;
(ii) Если A < 2

√
t0, то Γ = ∪2k=0Γ

∗
k, где Γ∗0 = Γ0, Γ∗2[0, T ] - кривая,

растущая из точки i
√

4t0 − A2 и ортогональная мнмой оси в этой точке,
Γ∗1[0, T ] симметрична Γ∗2[0, T ] относительно мнимой оси;

(iii) Если A = 2
√
t0, то Γ = ∪2k=0Γ

∗∗
k , где Γ∗∗0 = Γ0, Γ∗∗2 [0, T ] - кривая,

рапстущая из начала координат под углом π
4 к вещественной осиR, Γ∗∗1 [0, T ]

симметрична Γ∗∗2 [0, T ] относительно мнимой оси.

Теорема 0.2. Для любого T > t0, обобщенное дифференциальное уравне-
ние Левнера (2) с управляющими функциями, заданными (4) имеет реше-
ние w = g(z, t) на интервале [0, T ]. На интервале [0, t0], g(z, t) =

√
z2 + 4t,

а на интервале [t0, T ], w = g(z, t) удовлетворяет уравнению

(A2 + 4)(t− t0) = w2 − (z2 + 4t0)
A2

4 +1w−
A2

2 , w(z, t0) =
√
z2 + 4t0,

где ветви степенных функций выбраны таким образом, что они веществен-
ны и положительны при вещественных и положительных значениях z2+4t0

и w. Функция g(z, T ) отображает H \ Γ на H, Γ = ∪2k=0Γk, где Γ0 - сегмент
[0, i2

√
t0], Γ2 - квадратный корень от линейного сегмента выходящего из

точки (−4t0) под углом 4π/(A2 + 4) к вещественной оси R, а Γ1 симмет-
рична Γ2 относительно мнимой оси.

Доказательства приведенных теорем основаны на известных случаях
интегрируемости уравнения Левнера для постоянной управляющей функ-
ции и квадратного корня.

Глава 1 посвящена решению задачи о множестве значений решений хор-
дового уравнения Лёвнера. Задачи отыскания множества значений {f(z0)}
для различных классов аналитических функций - одни из типичных задач
геометрической теории функций. В приведенном обозначении функция f
принимает значения из некоторого заданного класса функций, а z0 - фик-
сированная точка из области определения функций этого класса.
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Множество задач такого рода было решено для классов аналитиче-
ских функций, определенных в единичном круге D. Мы упомянем неко-
торые из этих результатов. Рогозинский в [9] дал описание множества зна-
чений {f(z0)} для класса всех аналитических функций, отображающих
единичный круг D в себя, f(0) = 0, f ′(0) ≥ 0. Грунский в [10] описал
множество значений {log(f(z0)/z0) : f ∈ S}, z0 ∈ D для класса S. Го-
ряйнов и Гутлянский в [11] расширили этот результат описав множество
{log(f(z0)/z0) : f ∈ SM} для подкласса SM = {f ∈ S : |f | ≤ M} класса S
ограниченных функций.

Roth и Schleissinger в [12] описали множества значений {f(z0)} для всех
однолистных аналитических функций f : D → D, f(0) = 0, f ′(0) > 0,
таким образом, они получили аналог результата Рогозинского для одно-
листных функций. В той же статье [12] было описано множество значений
{g(z0)} для класса однолистных аналитических функций g : H→ H, отоб-
ражающих верхнюю полуплоскость H в себя и нормированных в окрест-
ности бесконечности соотношением g(z) = z + cz−1 + O(|z|−2), z → ∞.
Множества значений для некоторых классов однолистных аналитических
функций определенных в единичном круге D были описаны в [13,14].

Обозначим H(T ), T > 0 - класс всех конформных отображений g :

H\K → H, нормированных в окрестности бесконечности соотношением
g(z) = z + 2T

z + O(|z|−2). Здесь K ⊂ H - так называемый "хал"(hull),
это означает что K = H ∩ K и H\K есть односвязная область. Решения
хордового уравнения Лёвнера (1), где λ(t) - вещественнозначная непрерыв-
ная функция (управляющая функция), образуют всюду плотный подкласс
в классе H(T ). Таким образом, проблема отыскания множества значений
{g(z0) : g ∈ H(T )}, z0 ∈ H, сводится к описанию множества {g(z0, T )} до-
стижимости уравнения (1). Без потери общности можно положить z0 = i.
Множество

D(T ) = {g(i, T ) : g решение (1)}
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было описано в работе [15] в полярных координатах. Следующая теоре-
ма, доказанная в главе 1 дает более простое описание D(T ) в декартовых
координатах.

Теорема 0.3. Граница области D(T ), T > 0 может быть задана уравне-
нием

2X2 = log Y (1− 4T − Y 2). (6)

Продолжая это исследование, мы рассматриваем задачу описания мно-
жества значений

Dc(T ) = {g(i, T ) : g решение (1), |λ(t)| ≤ c},

таким образом, мы добавили ограничение |λ(t)| ≤ c. Мы используем мето-
ды теории оптимального управления и прицип максимума Понтрягина в
качестве основных инструментов для решения указанной задачи (см., на-
пример [16,17]). Доказана следующая теорема.

Теорема 0.4. Пусть c2 ≥ T− 1−e−4

4 , T ≤ 1
4 и пусть кривые l1−l4 определены

следующим образом:
1. Кривая l1 задана уравнением (6), Y ∈ [1 − 4T, Y0], Y0 единственное

решение уравнения

2c2 log Y + Y 2 = 1− 4T, c2 ≥ T − 1− e−4

4
. (7)

2. Кривая l2 задана решениями (X, Y ), X+ iY = z, µ ∈ [0, 1] уравнения

z2 + 1− 2c(2µ− 1)(z − i) + 8µc2(µ− 1) ln
z + c(2µ− 1)

i+ c(2µ− 1)
= 4T. (8)

3. Кривая l3 задана системой
2p2 log

Y p

c
+ Y 2 − p2 = 1− 4T − c2,

X = −c+ p(1− log
Y p

c
),

(9)
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где p ∈ [c, p0] и

p0 =

√
1

2
(
√

(4T + c2 − 1)2 + 4c2 + (4T + c2 − 1)). (10)

Кривая l4 симметрична кривой l3 относительно мнимой оси.
В случае, если уравнение

−4pc+
c2

p2
exp (−4c

p
)− p2 = 1− 4T − c2 (11)

имеет два различных решения p1 < p2 в интервале (c, p0) мы также опре-
делим кривые l5 − l10.

4. Кривая l5 задана системой (9), p ∈ [c, p1]. Кривая l6 симметрична l5
относительно мнимой оси.

5. Кривая l7 задана системой4cp+ (X − c)2 − Y 2 − 4T = c2 − 1,

− p log
(X − c)Y

c
= 2c,

(12)

где p ∈ [p1, p2]. Кривая l8 симметрична l7 относительно мнимой оси.
6. Кривая l9 задана системой (9), p ∈ [p2, p0]. Кривая l10 симметрична

l9 относительно мнимой оси.
Возможны два случая:
(1) Dc(T ) ограничена кривыми l1, l2, l5− l10, если (11) имеет два различ-

ных решения p1 < p2 в интервале (c, p0).
(2) Dc(T ) ограничена кривыми l1 − l4, если (11) имеет не более одного

решения в интервале (c, p0).

В главе 3 параметрический метод Левнера-Куфарева применяется для
решения задачи о соотношении конформных радиусов двух неналегающих
областей, одна из которых близка к единичному кругу, а вторая является
дополнением замыкания первой области в комплексной плоскости C.
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Пусть Ω - односвязная область в плоскости w, имеющая более од-
ной граничной точки, w0 ∈ Ω. Если w0 6= ∞, то по теореме Римана
существует единственная функция z = g(w), нормированная условиями
g(w0) = 0, g′(w0) = 1 и конформно отображающая Ω на круг Dr. Радиус
указанного круга r = r(Ω, w0) называется конформным радиусом области
Ω в точке w0. Пусть теперь ∞ ∈ Ω, тогда существует единственная функ-
ция z = g(w), регулярная в Ω за исключением точки ∞, в окрестности
которой она имеет разложение вида g(w) = w + c0 + c1w

−1 + ..., и одно-
листно отображающая Ω на область {|z| > 1

r}. В этом случае велечина
r = r(Ω,∞) называется конформным радиусом области Ω в точке ∞.

Пусть Bl, l = 1, ..., n - произвольные односвязные области в расширен-
ной комплексной плоскости C. Будем называть эти области неналегающи-
ми, если они попарно не имеют общих точек Bl ∩Bk = ∅, l 6= k.

Впервые, по-видимому, задачей о произведении конформных радиусов
неналегающих областей занимался М. А. Лаврентьев [18]. Он доказал сле-
дующее утверждение: если B1, B2 - неналегающие односвязные области,
a1 ∈ B1, a2 ∈ B2, a1 6=∞, a2 6=∞, то имеет место неравенство

r(B1, a1)r(B2, a2) ≤ |a2 − a1|2.

Большое число результатов в задачах о взаимно неналегающих обла-
стях получено методом площадей. Отметим следущий результат. Пусть
B0, B1 - неналегающие односвязные области в расширенной комплексной
плоскости, ∞ ∈ B0, 0 ∈ B1. Тогда [19, с. 223] произведение конформных
радиусов r(B0,∞)r(B1, 0) не превосходит единицы

r(B0,∞)r(B1, 0) ≤ 1, (13)

причем равенство достигается тогда и только тогда, когда границами обеих
областей B0, B1 служит окружность с центром в начале координат, то есть
B1 - круг с центром в начале координат, аB0 - внешняя по отношению к это-
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му кругу область. Неравенство (13) получено Н. А. Лебедевым [19, с. 223]
применением принципа площадей к задаче о неналегающих областях.

Другим подходом к рассмотрению задачи о соотношении конформных
радиусов двух неналегающих областей может служить параметрический
метод Левнера-Куфарева. Пусть задано однопараметрическое монотонное
семейство односвязных областей Ω(t), 0 ≤ t < T такое, что Ω(0) = D. Вме-
сте мы будем рассматривать однопараметрическое семейство Ω∗ = C\Ω(t).

Пусть Ω(t), 0 ≤ t < T - убывающее однопараметрическое семейство
односвязных областей, 0 ∈ Ω(t), Ω(0) = D, а функция f(z, t) = e−tz + ... -
при каждом t конформно отображает единичный круг на Ω(t), то f(z, t),
то f(z, t) удовлетворяет почти всюду уравнению

∂f(z, t)

∂t
= −z∂f(z, t)

∂z
p(z, t), 0 ≤ t < T, z ∈ D, (14)

где p(z, t) - функция из класса Каратеодори при каждом фиксированном
t, 0 ≤ t < T , что означает, что p(z, t) регулярна в D (при каждом фикси-
рованном t, 0 ≤ t < T ), p(0, t) = 1, Re p(z, t) > 0, z ∈ D, 0 ≤ t < T .

В работе [20] показано, что если в (14) управляющая функция p(·, t) ∈
C2(D), 0 ≤ t < T , p(z, ·) непрерывна на [0, T ) для любого z ∈ D, p(z, t),
p′(z, t) и p′′(z, t) ограничены на D × [0, T ), то для конформного радиуса
r(Ω∗(0),∞) имеет место асимптотическое соотношение

ln(r(Ω∗(0),∞)) = t+ o(t), t→ +0. (15)

Заметим, что конформный радиус области Ω(t) здесь равен r(Ω(t), 0) =

e−t. В главе 3 используя параметрический метод Левнера-Куфарева мы
продолжаем асимптотику (15), доказав следующую теорему.

Теорема 0.5. Пусть Ω(t), 0 ≤ t < T - монотонное однопараметриче-
ское семейство односвязных областей, 0 ∈ Ω(t), 0 ≤ t < T, Ω(0) = D,
ограниченных кривыми Γ(t), заданными в полярных координатах (r, ψ)

уравнением r = γ(ψ, t) = 1 + δ(ψ, t), 0 ≤ ψ ≤ 2π, 0 ≤ t < T , где
δ ∈ C3+α([0, 2π] × [0, T )), 0 < α < 1. При этом, пусть конформный
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радиус r(Ω(t), 0) = et, если Ω(t) - возрастающее семейство областей и
r(Ω(t), 0) = e−t, если Ω(t) - убывающее семейство областей. Пусть Ω∗(t)

- неограниченная компонента дополнения C\Γ(t). Тогда для конформного
радиуса r(Ω∗(t),∞) области Ω∗(t) справедлива формула

log r(Ω∗(t),∞) = ct+

 1

2π

2π∫
0

(δ̇(ϕ, 0))2 − δ̈(ϕ, 0) dϕ

 t2 + o(t2), t→ +0,

(16)
где c = 1, если Ω(t) - убывающее семейство, c = −1, если Ω(t) - возраста-
ющее семейство.
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