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Введение. При решении смешанных задач для уравнений в частных про-
изводных методом Фурье при обосновании равномерной сходимости ряда,
представляющего решение, и рядов, полученных из него почленным диффе-
ренцированием, приходится накладывать завышенные требования на началь-
ные данные задачи. Избежать этой проблемы впервые удалось А.Н. Крылову,
предложившему прием, который он назвал методом ускорения сходимости ря-
дов Фурье и им подобных. Этот прием заключался в том, что из исследуемого
ряда выделялся ряд простейшего вида с медленной сходимостью, но сумма
которого явно вычислялась, следовательно, можно было непосредственно су-
дить о ее гладкости. Оставшийся ряд уже имел достаточно большую скорость
сходимости для того, чтобы его можно было продифференцировать почленно
нужное число раз, и получающиеся ряды уже равномерно сходились. Разви-
вая прием А.Н. Крылова, В. А. Чернятин изучил ряд смешанных задач (для
волнового уравнения, уравнения теплопроводности, уравнения Шредингера),
так что в результате требования гладкости начальных данных в методе Фурье
не имеют никакого завышения и становятся естественными.

Целью данной бакалаврской работы является исследование смешанной за-
дача для дифференциального уравнения первого порядка с инволюцией и с
периодическими краевыми условиями. Приводится обоснование применения
метода Фурье на основе полученных уточненных асимптотических формул
для собственных значений и собственных функций соответствующей спек-
тральной задачи. Использованы идея А.Н. Крылова об ускорении сходимо-
сти рядов Фурье и метод контурного интегрирования резольвенты оператора
соответствующей спектральной задачи.

Получено классическое решение, позволяющие преобразовать ряд, пред-
ставляющий формальное решение по методу Фурье, и доказать возможность
его почленного дифференцирования. При этом на начальные данные задачи
накладываются минимальные требования.

Данная бакалаврская работа состоит из пяти глав:
1. Асимптотические формулы для собственных значений и собственных

функций спектральной задачи
2. Идея А.Н. Крылова об ускорении сходимости рядов Фурье
3. Метод В.А. Чернятина решения смешанной задачи
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4. Классическое решение смешанной задачи
5. Написание программы для нахождения резольвенты спектрального

оператора
Основное содержание работы. Во введении формулируются цель

бакалаврской работы и решаемые задачи.
В первой главе вводятся основные определения, записывается смешан-

ная задача и доказываются теоремы об асимптотике собственных значений и
собственных функций соответствующей задачи.

Рассмотрим следующую смешанную задачу с инволюцией:

∂u(x, t)

∂t
=
∂u(x, t)

∂x
+ q(x)u(1− x, t), x ∈ [0, 1], t ∈ (−∞,∞), (1)

u(0, t) = u(1, t), (2)

u(x, 0) = ϕ(x), (3)

где q(x) — комплекснозначная функция из C1[0, 1] такая, что q(0) =

q(1), функция ϕ(x) удовлетворяет естественным минимальным требованиям:
ϕ(x) ∈ C1[0, 1], ϕ(0) = ϕ(1), ϕ′(0) = ϕ′(1).

Введем оператор L:

Ly = l[y] = y′(x) + q(x)y(1− x), y(0) = y(1)

и рассмотрим соответствующую спектральную задачу Ly = λy :

y′(x) + q(x)y(1− x) = λy(x), (4)

y(0) = y(1). (5)

Доказаны следующие основные теоремы.
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Теорема 3. Собственные значения оператора L, достаточно большие по
модулю, простые и для них справедливы асимптотические формулы:

λn = 2nπi+O
(1

n

)
, n = ±n0, ±(n0 + 1), . . . ,

где n0 — некоторое достаточно большое натуральное число.

Теорема 4. Для собственных значений λn имеют место уточненные
асимптотические формулы:

λn = 2nπi+
α

n
+
αn
n
, n = ±n0, ±(n0 + 1), . . . .

Теорема 5. Для собственных функций оператора L имеют место асимп-
тотические формулы:

yn(x) = e2nπix +O
(1

n

)
, n = ±n0, ±(n0 + 1), . . . ,

где оценка O
(
·
)
равномерна по x ∈ [0, 1].

Теорема 6. Для собственных функций yn(x) оператора L имеют место
уточненные асимптотические формулы:

yn(x) = e2nπix + Ω1n(x) + Ω2n(x) +O
( 1

n2

)
,

где

Ω1n(x) =
1

n
[b(x)e−2nπix + b(x)e2nπix + b(x)αne

−2nπix + b(x)αne
2nπix],

Ω2n(x) =
1

n

[
b(x)

x∫
0

e2nπitq′2

(x− t
2

)
dt+ b(x)

x∫
0

e−2nπitq′2

(x+ t

2

)
dt

]
,

оценки O
(
·
)

равномерны по x ∈ [0, 1], а через b(x) обозначаем различные
непрерывные функции из некоторого конечного набора.

Во второй главе описывается идея А.Н. Крылова об ускорении сходи-
мости рядов Фурье.
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Если функцию f(x) представить в виде

f(x) = F (x) + η(x)

и выбрать функцию F (x) так, чтобы она имела те же скачки, как и f(x),
то разность ψ(x) = f(x) − F (x) представится таким рядом Фурье, порядок
коэффициентов которого будет не ниже второго.

Наоборот, если дано разложение некоторой функции в ряд Фурье, то при
нахождении суммы этого ряда или при приближенном представлении этой
функции первыми членами ряда, вообще говоря, можно взять для достиже-
ния одной и той же степени точности тем меньшее число членов, чем их
порядок относительно 1

n выше.
Такое выделение функции F (x) возможно всегда выполнить таким обра-

зом, что остаток ψ(x) представится рядом Фурье, коэффициенты которого
будут сколь угодно высокого порядка относительно 1

n .
Прием усиления быстроты сходимости рядов Фурье и нахождения про-

изводных от функций, ими представляемых, может служить для доказа-
тельства или для проверки того, что представляемая рядом функция дей-
ствительно удовлетворяет тому дифференциальному уравнению, как реше-
ние которого она найдена, хотя бы сам ряд и нельзя было дифференцировать
почленно требуемое число раз.

В третьей главе изложена модифицированная процедура обоснования
метода Фурье разделения переменных при решении линейных смешанных
задач для уравнений в частных производных произвольного порядка с дву-
мя независимыми переменными в случае самосопряженного обыкновенного
дифференциального оператора.

Рассмотрим неоднородное уравнение в частных производных с двумя
независимыми переменными x и t

Lxu(x, t) +Htu(x, t) = f(x, t), (6)
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где обыкновенные дифференциальные операторы Lx и Ht, определяются
формальными выражениями

Lx = q0(x)
∂k

∂xk
+ q1(x)

∂k−1

∂xk−1
+ . . .+ qk(x),

Ht = p0(t)
∂m

∂tm
+ p1(t)

∂m−1

∂tm−1
+ . . .+ pm(t)

с переменными коэффициентами, лишь

q0(x), p0(x) 6= 0 ∀ (x, t) ∈ Q,

Q — замкнутый прямоугольник.
Однородные граничные условия

Uiu(0, t) + Viu(π, t) = 0 ∀t ∈ [0, T ] (i = 1, 2, . . . , k), (7)

где обыкновенные дифференциальные операторы Ui и Vi определяются фор-
мальными выражениями

Ui = ai0
∂k−1

∂xk−1
+ ai1

∂k−2

∂xk−2
+ . . .+ ai(k−1),

Vi = bi0
∂k−1

∂xk−1
+ bi1

∂k−2

∂xk−2
+ . . .+ bi(k−1)

с постоянными коэффициентами. Начальные данные Коши

∂ju(x, 0)

∂tj
= ϕj(x), (j = 0, 1, 2, . . . , m− 1), (8)

Необходимо найти функцию

u(x, t) ∈ Ck,m(Q), (9)
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Относительно коэффициентов дифференциальных операторов Lx и Ht,
будем предполагать, что

qs(x) ∈ C[0, π], (10)

pr(t) ∈ C[0, T ], (11)

где s = 0, 1, 2, . . . , k и r = 0, 1, 2, . . . , m.

Теорема 10. Решение u(x, t) смешанной задачи, если оно существует един-
ственно и представляется равномерно сходящимся по x в Q рядом Фурье

u(x, t) =
∞∑
n=1

Tn(t)yn(x) (12)

по ортонормальной на [0, π] системе функций {yn(x)} с коэффициентами
Tn(t), определяемыми решениями задачи Коши

HtTn(t) + λnTn(t) = Fn(t), (13)

T (j)
n (0) = 〈ϕj, yn〉, (14)

где j = 0, 1, 2, . . . , m− 1.

Теорема 11. Решение смешанной задачи существует тогда и только то-
гда, когда функции qs(x), pr(t), f(x, t) и ϕj(x) таковы, что сумма S(x, t)

функционального ряда
∞∑
n=1

Tn(t)yn(x), (15)

принадлежит классу
S(x, t) ∈ Ck,m(Q) (16)

и удовлетворяет граничным условиям

UiS(0, t) + ViS(π, t) = 0, (17)

где i = 1, 2, . . . , k.
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В сравнении со стандартным новый подход к обоснованию метода Фурье
имеет два очевидных преимущества:

1) отказ от многократного почленного дифференцирования формального
решения S(x, t) в виде ряда (15), что существенно ослабляет условия разре-
шимости смешанной задачи (6)-(9);

2) предельная форма условий существования классического решения за-
дачи в виде необходимых и достаточных условий разрешимости.

В четвертой главе описывается классическое решение смешанной за-
дачи. По методу Фурье решение задачи, рассматриваемой в данной работе,
берется в виде

u(x, t) =
1

2πi

∫
|λ|=r

(Rλ(ϕ))(x)eλtdλ+
∑
|λn|>r

(ϕ, z−n)

yn, z−n
yn(x)eλnt, (18)

где r > 0 фиксировано и таково, что при |λn| > r все собственные значения
простые.

Доказывается теорема для формального решения (18).

Теорема 13. Для формального решения (18) имеет место формула

u(x, t) = u0(x, t) + u1(x, t) + u2(x, t),

где u0(x, t) = F (x + t) при F (x) ∈ C1(−∞,+∞), F (x) = F (x + 1) и F (x) =

ϕ(x) при x ∈ [0, 1],

u1(x, t) = − 1

2πi

∫
|λ|=r

((Rλ −R0
λ)ϕ)(x)eλtdλ,

u2(x, t) =
∑
|λn|>r

[ (ϕ, z−n)

(yn, z−n)
yn(x)eλnt − (ϕ, e2nπx)e2nπi(x+t)

]
.

Доказывается, что ряд u2(x, t) сходится абсолютно и равномерно по x ∈
[0, 1] и всем t ∈ [−A,A] при любом A > 0.

Основной результат:
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Теорема 15. Если q(x) ∈ C1[0, 1], q(0) = q(1), ϕ(0) = ϕ(1), ϕ′(0) = ϕ′(1),

то классическое решение поставленной задачи существует и имеет вид (18).

В пятой главе реализуется программа для нахождения резольвенты опе-
ратора L, при q(x) ≡ 1:

y′(x) + y(1− x) = λy(x), x ∈ [0, 1],

y(0) = y(1),

где λ — произвольное число.
Нахождение резольвенты оператора L сводится к решению системы ли-

нейных дифференциальных уравнений.z′(x)1 + z2(x)− λz1(x) = ϕ(x),

−z′2(x) + z1(x)− λz2(x) = ϕ(1− x),
(19)

z1(0) = z2(0) =
4

3
,

где z1(x) = y(x), z2(x) = y(1− x).

Для решения данной используем метод Рунге-Кутта четвертого порядка.
Выберем шаг h = 0.1, λ = −2, ϕ(x) = x.

Общие формулы для решения системы линейных дифференциальных
уравнений:

dyi
dx

= fi(x, y1, . . . , yn), i = 1, n, x ∈ [a, b]

xi = a+ ih,

ki1 = hfi(xj, y1j, . . . , ynj),

ki2 = hfi(xj +
h

2
, y1j + k11/2, . . . , ynj + kn1/2),

ki3 = hfi(xj +
h

2
, y1j + k12/2, . . . , ynj + kn2/2),

ki4 = hfi(xj + h, y1j + k13, . . . , ynj + kn3),

yi j + 1 = yij +
ki1 + 2ki2 + 2ki3 + ki4

6
.

9



Точное решение системы (19) имеет вид:

z1(x) = −1

3
e−
√
3x(−3e2

√
3x + 2

√
3e2
√
3x − 3− 2

√
3)−

−e
−
√
3x(e2

√
3x − 1)

2
√

3
+ x− 2

3
.

z2(x) =
e−
√
3x(e2

√
3x − 1)√

3
+

1

6
e−
√
3x(3e2

√
3x + 2

√
3e2
√
3x + 3− 2

√
3)− t+

1

3
.

Погрешность метода составила 0.000035

Заключение. В данной бакалаврской работе, было доказано, что клас-
сическое решение задачи (1) − (3) существует и имеет вид (18). При этом
функция ϕ(x) удовлетворяет только естественным минимальным требовани-
ям: ϕ(x) ∈ C1[0, 1], ϕ(0) = ϕ(1), ϕ′(0) = ϕ′(1).

Применяя идеи А.Н. Крылова и В.А. Чернятина, мы избежали исследова-
ния равномерной сходимости почленно продифференцированного формаль-
ного решения по методу фурье.

Также была реализована программа для нахождения собственных резоль-
венты оператора L с помощью метода Рунге-Кутта четвертого порядка.
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