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ВВЕДЕНИЕ

Целью данной выпускной квалификацинной работы бакалавра является
ослабление условия гладкости на начальные данные смешанной задачи вол-
нового уравнения.

Обоснование метода Фурье в задачах математической физики традицион-
но опирается на доказательство равномерной сходимости ряда, представля-
ющего формальное решение задачи, и рядов, полученных из него почленным
дифференцированием нужное число раз. Однако, недостатком такого подхо-
да является требование завышенной гладкости на начальную функцию.

В работе изучается следующая задача:

utt = uxx − q(x)u(x, t), x ∈ [0, 1], t ∈ [0,∞),

u(0, t) = ux(0, t)− ux(1, t)− au(1, t) = 0,

u(x, 0) = ϕ(x), ut(x, 0) = 0,

где q(x) ∈ C[0, 1] и комплекснозначна, a – комплексное число.
Структура работы следующая:

Введение;
1. Метод разделения переменных;

1.1. Общая схема метода;
2. Асимптотика собственных значений;
3. Классическое решение смешанной задачи;

3.1. Представление частичной суммы ряда Фурье контурным интегра-
лом;

3.2. Исследование формального решения;
4. Численное нахождение собственных значений;

4.1. Разностный метод;
4.2. Результаты численного эксперимента;
Заключение;
Список использованных источников;
Приложение А Исходный код программы;
А.1 Главный файл;
А.2 Метод конечных разностей;

2



А.3 Метод Мюллера.
Во введении формулируются цель работы и решаемая задача.
В первой главе дается общая схема метода Фурье и приводится теорема

о собственных значениях и собственных функциях возникающей в процессе
решения задачи Штурма-Лиувилля.

Во второй главе доказывается теорема об асимптотике собственных зна-
чений.

В третьей главе определяются необходимые понятия и предположения
для представления частичной суммы ряда Фурье контурным интегралом и
проводится исследование основной задачи.

В четвертой главе дается описание программы, реализующей нахождение
собственных значений задачи Штурма-Лиувилля, и приводятся результаты
ее работы.

В приложении А находится исходный код программы.
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1 Основное содержание работы

В первой главе приводится общая схема метода Фурье и приводится тео-
рема о собственных значениях и собственных функциях появляющейся в про-
цессе решения задачи Штурма-Лиувилля:

Теорема 1.1. (1) Краевая задача

− (k(x)Y ′(x))
′
+ q(x)Y (x) = λp(x)Y (x), 0 < x < l,

h1Y
′(0)− hY (0) = 0, H1Y

′(l) +HY (l) = 0.

имеет счетное множество собственных значений {λn}n≥0. Все они веще-
ственные и простые, т.е. λn 6= λk при n 6= k, причем

ρn :=
√
λn =

πn

T
+O(

1

n
), n→∞,

где

T =

l∫
0

√
p(τ)

k(τ)
dτ.

Каждому собственному значению соответствует только одна, с точно-
стью до постоянного множителя, собственная функция Yn(x).

(2) Собственные функции, соответствующие различным собственным
значениям, ортогональны в L2,p(0, l), т.е.

l∫
0

Yn(x)Yk(x)p(x)dx = 0 при n 6= k.

Система собственных функций {Yn(x)}n≥0 полна в L2,p(0, l).
(3) Пусть f(x), x ∈ [0, l] – абсолютно непрерывная функция. Тогда

f(x) =
∞∑
n=0

anYn(x),
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где

an =
1

αn

l∫
0

f(x)Yn(x)p(x)dx, αn =

l∫
0

Y 2
n (x)p(x)dx,

причем ряд сходится равномерно на [0, l].

Во второй главе доказывается теорема об асимптотике собственных зна-
чений:

Теорема 2.1. Собственные значения дифференциального оператора n-го по-
рядка в интервале [0, 1], порожденного регулярными краевыми условиями,
образуют две бесконечные последовательности λ′k, λ

′′
k (k = N,N + 1, N +

2, . . .), где N – некоторое целое число.
При нечетном n = 4q − 1,

λ′k = (−2kπi)n
[
1− n ln0 ξ

(1)

2kπi
+O

(
1

k2

)]
, (1.1)

λ′′k = (2kπi)n
[
1 +

n ln0 ξ
(2)

2kπi
+O

(
1

k2

)]
, (1.2)

а для нечетного n = 4q + 1,

λ′k = (2kπi)n
[
1 +

n ln0 ξ
(1)

2kπi
+O

(
1

k2

)]
, (1.3)

λ′′k = (−2kπi)n
[
1− n ln0 ξ

(2)

2kπi
+O

(
1

k2

)]
, (1.4)

где θ0 и θ1 отличны от нуля и определяются равенством

θ0 + θ1s =

∣∣∣∣∣∣∣∣∣∣
α1ω

k1
1 . . . α1ω

k1
µ−1 (α1 + sβ1)ω

k1
µ β1ω

k1
µ+1 . . . β1ω

k1
n

α2ω
k2
1 . . . α2ω

k2
µ−1 (α2 + sβ2)ω

k2
µ β2ω

k2
µ+1 . . . β2ω

k2
n

... . . . ... ... ... . . . ...
αnω

kn
1 . . . αnω

kn
µ−1 (αn + sβn)ω

kn
µ βnω

kn
µ+1 . . . βnω

kn
n

∣∣∣∣∣∣∣∣∣∣
,

ξ(1) и ξ(2) – определенные ранее корни уравнения θ0+ θ1ξ, отвечающего обла-
сти Sv с v, соответственно нечетным и четным.
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При четном n = 2µ и θ20 − 4θ−1θ1 6= 0

λ′k = (−1)µ(2kπ)n
[
1∓ µ ln0 ξ

′

kπi
+O

(
1

k2

)]
, (1.5)

λ′′k = (−1)µ(2kπ)n
[
1∓ µ ln0 ξ

′′

kπi
+O

(
1

k2

)]
, (1.6)

где ξ′ и ξ′′ – корни уравнения

θ1ξ
2 + θ0ξ + θ−1 = 0. (1.7)

отвечающего области S0, причем верхний знак в (1.5), (1.6) соответствует
четному, а нижний – нечетному µ. Для четного n = 2µ и θ20 − 4θ−1θ1 = 0

λ′k = (−1)µ(2kπ)n
[
1∓ µ ln0 ξ

kπi
+O

(
1

k3/2

)]
, (1.8)

λ′′k = (−1)µ(2kπ)n
[
1∓ µ ln0 ξ

kπi
+O

(
1

k3/2

)]
, (1.9)

где ξ – двойной корень уравнения (1.7), отвечающего области S0, а выбор
знака в (1.8), (1.9) следует производить по такому же правилу как в (1.5),
(1.6).

θ−1 и θ1 отличны от нуля и определяются равенством

θ−1
s

+ θ0 + θ1s =

=

∣∣∣∣∣∣∣∣∣∣
α1ω

k1
1 . . . α1ω

k1
µ−1 (α1 + sβ1)ω

k1
µ (α1 +

1
sβ1)ω

k1
µ+1 β1ω

k1
µ+2 . . . β1ω

k1
n

α2ω
k2
1 . . . α2ω

k2
µ−1 (α2 + sβ2)ω

k2
µ (α2 +

1
sβ2)ω

k2
µ+1 β2ω

k2
µ+2 . . . β2ω

k2
n

... . . . ... ... ... ... . . . ...
αnω

kn
1 . . . αnω

kn
µ−1 (αn + sβn)ω

kn
µ (αn +

1
sβn)ω

kn
µ+1 βnω

kn
µ+2 . . . βnω

kn
n

∣∣∣∣∣∣∣∣∣∣
,

Здесь ln0 – какое то фиксированное значение натурального логарифма.
В первых трех случаях все собственные значения, начиная с некотого,

простые, а в четвертом, начиная с некоторого, простые, или двукратные.
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В третьей главе определяются необходимые понятия и предположения
для представления частичной суммы ряда Фурье контурным интегралом и
проводится исследование основной задачи:

Определение 1.1. Резольвентой интегрального оператора A называется
следующая оператор-функция:

Rλ(A) = (E − λA)−1A,

где E – единичный оператор, λ – комплексный параметр. Если оператор (E−
λA)−1 ограничен, то λ называется регулярной точкой. Таким образом, Rλ(A)

есть оператор-функция, определенная на множестве регулярных точек.

Определение 1.2. Пусть γ – какой-нибудь контур в λ-плоскости, не прохо-
дящий через характеристические значения. Оператор

P = − 1

2πi

∫
γ

Rλdλ

называется проектором Рисса.

Теорема 3.2. Имеет место формула

Sr(f, x) = −
1

2πi

∫
|λ|=r

Rλfdλ,

где Sr(f, x) =
∑
|λk|<r

(f, ψk)ϕk, {ϕk}∞k=1 – системы всех с.п.ф. для λk : |λk| < r,

{ψk}∞k=1 – система биортогональная всей системе {ϕk}∞k=1. Нумерация {ϕk}
идет в порядке возрастания модулей характеристических чисел с учетом
кратности.

Формальное решение исходной задачи

utt = uxx − q(x)u(x, t), x ∈ [0, 1], t ∈ [0,∞), (1.10)

u(0, t) = ux(0, t)− ux(1, t)− au(1, t) = 0, (1.11)

u(x, 0) = ϕ(x), ut(x, 0) = 0, (1.12)
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по методу Фурье возьмем в виде:

u(x, t) = − 1

2πi

∫
|λ|=r

(Rλϕ) cos ρtdλ−
∑
k≥k0

1

2πi

∫
γ̃k

(Rλϕ) cos ρtdλ, (1.13)

Преобразование формального решения с учетом эталонной задачи дается
следующей теоремой.

Теорема 3.3. Для формального решения имеет место формула

u(x, t) = u0(x, t) + u1(x, t) + u2(x, t),

где

u0(x, t) = −
1

2πi

∫
|λ|=r

1

λ− µ0
(
R0
λg
)
cos ρtdλ−

∑
k≥k0

1

2πi

∫
γ̃k

1

λ− µ0
(
R0
λg
)
cos ρtdλ,

u1(x, t) = −
1

2πi

∫
|λ|=r

1

λ− µ0
(
Rλg −R0

λg
)
cos ρtdλ,

u2(x, t) = −
1

2πi

∑
k≥k0

1

λ− µ0

∫
γ̃k

(
Rλg −R0

λg
)
cos ρtdλ,

а R0
λ = (L0 − λE)−1.

Используя асимптотику собственных значений и асимптотические форму-
лы для резольвенты из 3-й главы, доказывается, что ряды u0(x, t) и u2(x, t)
сходятся при любых x ∈ [0, 1], t ∈ [0,∞). Следовательно, сходится ряд (1.13).
Далее под u(x, t) понимаем его сумму.

Главный результат этой главы и работы в целом дается следующей тео-
ремой:

Теорема 3.10. Формальное решение u(x, t) задачи (1.10)-(1.12) есть клас-
сическое решение при ϕ(x) ∈ C2[0, 1] и выполнении условия

ϕ(0) = ϕ′(0)− ϕ′(1)− aϕ(1) = ϕ′′(0) = 0.
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В четвертой главе дается описание программы, реализующей нахождение
собственных значений задачи Штурма-Лиувилля:

С помощью замены y′′ на ее разностную аппроксимацию получим вместо
дифференциального уравнения систему алгебраических уравнений:

−y0 + y1
(
2 + h2 (qi − λ)

)
− y2 = 0

−y1 + y2
(
2 + h2 (qi − λ)

)
− y3 = 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

−yN−2 + yN−1
(
2 + h2 (qi − λ)

)
− yN = 0

или, в матричном виде:
(A− h2λE)Y = 0,

Чтобы найти собственные значения будем искать корни характеристиче-
ского многочлена det(A − h2λE). Сам многочлен вычисляется с помощью
следующей рекуррентной формулы:

Dm(λ) = (amm − λ)Dm−1(λ)− amm−1am−1mDm−2(λ).

Для начала расчета удобно положить D−1(λ) = 0, D0(λ) = 1.
Для нахождения корней характеристического многочлена det(A− h2λE)

используется метод Мюллера (парабол). Это итерационный метод для ре-
шения уравнения f(x) = 0. В качетсве следующего приближения берет-
ся точка пересечения параболы, проходящей через три точки (xk, f(xk)),
(xk−1, f(xk−1)), (xk−2, f(xk−2)), и оси x.

Для определения оптимального числа итераций удобно пользоваться при-
емом Гарвика:

1. Выбирается не очень малое ε;
2. Итерации ведутся до выполнения условия |xk+1 − xk| < ε;
3. Затем итерации продолжаются до тех пор, пока |xk+1 − xk| убывает.
Для примера возьмем задачу Штурма-Лиувилля на отрезке [0, 1] с нуле-

вым потенциалом: −y′′ = λy, y(0) = y(1) = 0. Ее собственные значения есть
λn = π2n2. Количество узлов сетки N = 64.
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Таблица 1.1 — Собственные значения задачи −y′′ = λy, y(0) = y(1) = 0

Собственное зна-
чение

Приближенное Точное Погрешность

λ1 9.8676227 9.8696044 0.0080227

λ2 39.4467191 39.4784176 0.0316985

λ3 88.6660303 88.8264396 0.0703696

λ4 157.4069829 157.9136704 0.3466170

λ5 245.5039738 246.7401100 0.9860261

Как видно из таблицы 1.1, первые собственные значения аппроксимиру-
ются с хорошей точностью, однако, уже для пятого погрешность близка к
1.
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ЗАКЛЮЧЕНИЕ

В данной бакалаврской работе было получено классическое решение сме-
шанной задачи волнового уравнения при минимальных требованиях на на-
чальные данные. Для этого был привлечен метод Коши-Пуанкаре контурного
интегрирования резольвенты оператора, порождаемого спектральной зада-
чей из метода Фурье. Также была реализована программа для нахождения
собственных значений задачи Штурма-Лиувилля.
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