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ВВЕДЕНИЕ

Актуальность темы исследования. Управляемые марковские процессы
возникают в самых разнообразных областях. Обратимся, например, к эконо-
мическому планированию. Планировать можно работу отдельного предпри-
ятия, отрасли или всего народного хозяйства. В начале каждого периода,
исходя из достигнутого состояния, намечается план на следующий период.
Развитие системы можно описывать математически как управляемый детер-
минированный процесс, если считать, что состояние системы в конце каждо-
го периода однозначно определяется состоянием в начале периода и планом
на этот период. Однако не всегда можно пренебрегать влиянием таких фак-
торов, как метеорологические условия, демографические сдвиги, колебания
спроса, несовершенство координации сложных производственных процессов,
научные открытия и изобретения. Эти факторы лучше учитываются стоха-
стическими моделями, в которых, зная состояние в начале периода и план,
можно вычислить лишь распределение вероятностей для состояния в конце
периода. Таким образом приходим к управляемому марковскому процессу.

Управляемые марковские процессы рассматриваются в задачах таких
как: распределение ресурса между производством и потреблением и меж-
ду различными отраслями производства, замена оборудования, стабилизация
линейной систем, находящейся под влиянием случайных возмущений, распре-
деление ставок в игре и т.д.

Актуальность определила выбор темы данной работы: «Управляемые
марковские процессы и их применение к задаче о распределении ставок в
игре».

Целью работы является изучение теории управляемых марковских про-
цессов и решение задач о распределении ставок в игре для конечного случая.

Объект и предмет исследования - управляемые марковские процессы и
задача о распределении ставок в игре.

Практическая значимость. Вместо двух игр можно рассматривать два
способа помещения денег (например, в сбербанк или коммерческий банк),
или две производственные отрасли с различными коэффициентами отдачи.
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ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Выпускная квалификационная работа состоит из введения, трех теоре-
тических и одной практической главы, заключения, списка использованных
источников и приложения.

Введение содержит основные положения: статически подкрепленную
актуальность темы исследования; цель, объект, предмет, и практическую зна-
чимость исследования.

В первой главе «Конечные управляемые марковские модели на проме-
жутке времени [m,n]» приведены основные компоненты управляемых марков-
ских моделей, рассмотрены стратегии и оценки, фундаментальное уравнение,
уравнения оптимальности. Теоретической основой были источники литерату-
ры [1]-[2].

Для задания марковской модели на промежутке времени [m,n] необхо-
димо задать следующие компоненты:

1. Множества Xm, ..., Xt, ..., Xn. Xt(t = m, ..., n)− множество состояний
в момент времени t,Xm множество начальных состояний; Xn− множе-

ство конечных или финальных состояний, X =
n⋃

t=m
Xt− множество всех

состояний, X ′ =
n−1⋃
t=m

Xt− множество всех нефинальных состояний.

2. Множества Am, ..., At, ..., An. At(t = m, ..., n)− множество управлений в

момент времени t, A =
n−1⋃
t=m

At− множество всех управлений.

3. Отображение α : X ′ −→ 2A(2A− множество всех подмножеств A), об-
ладающее свойством ∀x ∈ Xtα(x) ⊂ At.

4. Отображение P , ставящее в соответствие каждому управлению a ∈ At

распределение вероятностей Pa на Xt+1. P− переходная функция. Рас-
пределения Pa мы будем также обозначать P (·/a), а значение Pa(y) −
Pa(y/a).

Pa(y)− это вероятность, применив управление a ∈ At в состоянии x =

j(a), попасть на следующем шаге в состояние y ∈ Xt+1.
5. Функция q : A −→ R - текущая плата.
6. Функция r : Xn −→ R - финальная плата.

Путем называется следующая последовательность состояний и управ-
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лений

l = xmam...xtat...xn1an1xn.

L− множество всех путей.
Оценкой пути l называется число

I(l) =
n−1∑
t=m

q(at) + r(xn).

Вероятностью пути называется число

P (l) = µ(xm)
n−1∏
t=m

P (xt+1|at).

В главе также рассмотрена простая стратегия. С помощью нее в каждом
нефинальном состоянии выбирается конкретное допустимое управление. Су-
ществует более сложный способ управления, чем простые стратегии, а именно
способ, когда в каждом состоянии выбирается не конкретное управление, а
распределение вероятностей на множестве допустимых управлений, и оно за-
висит не только от состояния, в котором находится процесс, но и от всего его
развития. Таким способом является стратегия . Далее в главе даны определе-
ния оптимальности стратегий и приведены теоремы, в которых доказывается,
что в конечной управляемой марковской модели существует равномерно оп-
тимальная стратегия.

Стратегия π0 называется оптимальной для начального распределения
µ, если справедливо равенство

ω(µ, π0) = max
π
ω(µ, π).

Стратегия π0 называется оптимальной для начального состояния x ∈
Xm, если справедливо равенство

ω(µ, π0) = max
π
ω(x, π).

После приведены понятия фундаментального уравнения и уравнений
оптимальности.

Оценка стратегии при начальном состоянии x в исходной модели свя-
зана с оценкой ω′ в производной модели равенством:
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ω(x, π) =
∑

a∈α(x)
π(a/x)[q(a) + ω′(Pa, π

′
a)],

называемым фундаментальным уравнением.
Если − оценка состояний в исходной модели Z, ′ - оценка состояний в

производной модели Z ′ , то и ′ связаны соотношением

∀x ∈ Xmv(x) = max
a∈α(x)

u(a),

где u(a) = q(a) + v′(Pa) = q(a) +
∑

y∈Xm+1

P (y/a)v′(y).

Соотношение называется уравнением оптимальности.
Во второй главе «Задача о распределении ставок в игре» описана поста-

новка задачи о распределении ставок в игре и приведены результаты решения
этой задачи для конечного случая.

Задача состоит в следующем:
Пусть имеющийся капитал x можно распределить между двумя вари-

антами игры. При ставке z выигрыш в первой игре равен σz, а во второй
τz, где σ и τ - случайные величины с различными распределениями веро-
ятностей. Игра повторяется многократно. Пусть xt - общая сумма, которой
играющий располагает в момент времени t. Тогда, если at - капитал, вкла-
дываемый на шаге t в первую игру, xtat - капитал, вкладываемый во вторую
игру, то капитал на шаге t+ 1 вычисляется по формуле:

xt+1 = σtat + τt(xt − at).

Вместо двух игр можно рассматривать два способа помещения денег
(например, в сбербанк или коммерческий банк), или две производственные
отрасли с различными коэффициентами отдачи.

Целью является получение максимально возможного окончательного
выигрыша, который можно оценить с помощью неубывающей функции r(x).
Оптимальное поведение зависит от вида функции r. Может случиться, что
требуется определенная сумма c и целью является выиграть эту сумму с
максимальной вероятностью. В этом случае надо положить:

r(x) =

1, x ≥ c,

0, x < c.
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Так же рассмотрены основные определения и свойства полунепрерыв-
ной модели, и также описано нахождение оптимальной стратегии в задаче о
распределении ставок в игре. Теоретической основой были источники лите-
ратуры [3]-[10].

Пусть E - произвольное метрическое пространство. Напомним, что мно-
жество E называется метрическим пространством, если любым x, y ∈ E со-
поставлено неотрицательное число ρ(x, y) (расстояние между x и y), такое
что:

1) ρ(x, y) = ρ(y, x);

2) ρ(x, y) = 0 тогда и только тогда, когда x = y;

3) ρ(x, y) ≤ ρ(x, z) + ρ(y, z)∀x, y, z ∈ E.
Функция, заданная на E называется полунепрерывной, если все множе-

ства {x : f(x) ≥ c}, где c - действительное число, замкнуты. Обычно такие
функции называют полунепрерывными сверху.

Пусть даны два метрических пространства (E,B(E)) и (E ′, B(E ′)). Со-
ответствие из E в E ′ сопоставляет каждой точке x пространства E непустое
множество Φ(x) в другом пространстве E ′ . Говорят, что соответствие Φ(x)

квазинепрерывно по x, если при xk −→ x ∈ X(xk ∈ X) и ak ∈ Φ(xk) после-
довательность ak имеет предельную точку, принадлежащую Φ(x).

Функция δ : E −→ E ′ называется селектором соответствия Φ, если δ(x)

принадлежит множеству Φ(x) при всех x из E.
Соответствие допускает измеримый выбор, если для него существует

измеримый селектор.
Модель Z назовем полунепрерывной, если:

1. Множество состояний X - сепарабельное метрическое пространство,
при этом Xm, Xm+1, ..., Xn− замкнутые подмножества X.

2. Множество управлений A− сепарабельное метрическое пространство и
Am, ..., An1 - замкнутые подмножества A.

3. Соответствие α(x) квазинепрерывно по x.
4. Если f ∈ L(Xt) и g(a) =

∫
Xt

p(dx|a)f(x), где a ∈ At. Тогда g ∈ L(At)(t =

m+ 1, ..., n).

5. Плата q на множестве At принадлежит L(At).
6. Плата r принадлежит L(Xn).
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Далее в главе приведено понятие дерзкой стратегии и с помощью ин-
дукции по n доказано, что дерзкая стратегия оптимальна.

Суть дерзкой стратегии заключается в том, что нужно делать возмож-
но большие ставки, совместимые с наличными средствами, т.е избегая бес-
цельного риска. Это значит, что при x ≤ 1/2 следует ставить на игру весь
имеющийся капитал x, при 1/2 ≤ x ≤ 1− ставить недостающую сумму 1x,
при 1 ≤ x - вообще ничего не ставить. Дерзкая стратегия задается на всех
шагах одним и тем же селектором

ψ0(x) =


x, 0 ≤ x ≤ 1/2,

1 - x, 1/2 ≤ x ≤ 1,

0, x > 1.

В третьей главе «Разработка алгоритма решения задачи о распределе-
нии ставок в игре для конечного случая» приведен алгоритм решения задачи
о распределении ставок в игре для конечного случая, написанный на языке
программирования Java.

Задача о распределении ставок в игре описывается реккурентным урав-
нением

xt = [atσt + (1− at)τt]xt−1.

Можно представить себе игру, где с определенной вероятностью вый-
грыш равен поставленной сумме денег и с обратной вероятностью ставка те-
ряется. Игрок, распологающий наличностью, выбирает на каждом шаге раз-
мер ставки. Его цель - с максимальной вероятностью в конце игры получить
сумму, не меньше максимальной доступной ставки.

Оптимальное поведение игрока существенно зависит от соотношений
вероятностей проигрыша и победы. При фиксированном числе шагов задача
определения оценки и стратегии была рассмотрена и запрограммирована в
ранних разделах. Данную задачу можно рассмотреть при допущении сколь
угодно длинного промежутка игры.

Так же была рассмотрена задача о распределении ресурса между по-
треблением и различными отраслями производства.
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В задаче о распределении ресурса между двумя отраслями и потребле-
нием

имеется ресурс x, который нужно распределить между производством
и потреблением на шаге . Если at− часть ресурса, вкладываемая в производ-
ство, st ∈ St− случайный фактор, то ресурс в следующий момент времени
вычисляется по формуле

xt+1 = Ft(at, St).

Задача управления состоит в максимизации дохода за n шагов.
Управляемая марковская модель, соответствующая данной задаче, вы-

глядит следующим образом

∀Xl = X = [0, C],

где C− достаточно большое число,

At = A = X,

∀x ∈ X,α(x) = [0, x],

переходная функция задается равенством

xt+1 = Ft(at, St),

доход за t шагов
n∑
t=1

q(xt − at),
r ≡ 0.

Уравнение оптимальности принимает вид

vt(x) = max
0≤a≤x

[q(x− a) +Mvt+1(Ft(a, S))].

Предположим, что ∀t = m, ..., n − 1, q(c) = cα, α ∈ (0, 1), s− положитель-
ная случайная величина с одним и тем же распределением вероятностей и
F (a, s) = as то есть выпуск пропорционален затратам.
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Уравнения оптимальности принимают вид

vt(x) = max
0≤a≤x

[(x− a)α +Mvt+1(as)], t = 0, ..., n− 1;

vn ≡ r ≡ 0.

Предположим, что vt+1(x) = bt+1x
α, и вычислим vt(x).

Mvt+1(as) = Mbt+1(as)
α = bt+1a

αMsα = λbt+1a
α,

где λ = Msα,

Ищем max
0≤a≤x

[(x− a)α + λbt+1a
α].

Приравнивая производную нулю получаем

a =
x

(λb)
1

α−1 + 1
;

1

(x− a)1−α
=
λbt+1

a1−α
;

a =
(λbt+1)

1
1−α

1 + (λbt+1)
1

1−α
· x.

Подставляя найденное значение a в выражение для vt(x), получаем

vt(x) =
1 + (λbt+1)

1
1−α

(1 + (λbt+1)
1

1−α )α
xα = (1 + (λbt+1)

1
1−α )1−α · xα.

Таким образом, если vt+1(x) = bt+1x
α, то vt(x) = btx

α,

где bt = (1 + (λbt+1)
1

1−α )1−α,

при этом оптимальное уравнение на шаге t

dt =
(λbt+1)

1
1−α

1 + (λbt+1)
1

1−α
· x.

Поскольку vn ≡ r ≡ 0, то dn−1 = 0, bn−1 = 1 и далее используем найденные
рекурентные формулы.
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Введем b′k = bn−k; d
′
k = dn−k. Тогда вырны равенства

b′0 = 0, b′k+1 = [1 + (λb′k)
1

1−α ]1−α,

d′k+1 =
(λb′k)

1
1−α

1 + (λb′k)
1

1−α
.

Далее введем ck.

ck = b
1

1−α
k ;

связаны соотношением
ck+1 = 1 + µck,

где
µ = [Msαt ]

1
1−α .

Таким образом
c0 = 0,

ck = 1 + µ+ ...+ µk−1, k = 1, 2, ...

Тогда коэффициенты bk и dk выражаются через ck по формулам

bk = c1−αk ,

dk =
µck

1 + µck
.

Приведенные формулы дают полное решение задачи.
В заключении преведены результаты бакалаврской работы.
В приложении представлены получившийся программный код и резуль-

таты его выполнения.
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ЗАКЛЮЧЕНИЕ

В данной работе была решена задача о распределении ставок в игре
с помощью теории управляемых марковских процессов. Были рассмотрены
теоретические сведения теории управляемых марковских процессов, был при-
веден алгоритм решения задачи для конечного случая, результаты выпол-
нения которого доказывают, что нужно делать возможно большие ставки,
совместимые с наличными средствами, т.е избегая бесцельного риска. При
капитале x ≤ 1/2 следует ставить на игру весь имеющийся капитал x, при
1/2 ≤ x ≤ 1 - ставить недостающую сумму 1x, при 1 ≤ x - вообще ничего не
ставить.

Была рассмотрена задача распределения ресурсов производства и по-
требления в дискретном и полунепрерывном случае, описан алгоритм и на-
писана программа подтверждающая теоретические описания моделей и де-
монстрирующие ожидаемые результаты.
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