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Введение. Актуальность темы. В данной работе рассматривается од-
на из некорректно поставленных задач, в которой решение не является устой-
чивым. К такой задаче сводится ряд важных задач математической физики,
вычислительной математики, теории интегральных уравнений, а также мно-
гие прикладные задачи. B течение долгого времени считалось, что эти за-
дачи не имеют практического значения, и их теория не может привести к
содержательным математическим результатам. Такое мнение было распро-
странено даже после работы A.H. Тихонова 1943 г., в которой впервые была
указана практическая важность подобных задач и возможность устойчивого
их решения. В конце пятидесятых и особенно в начале шестидесятых годов
появился ряд новых подходов, которые стали основополагающими для теории
некорректных задач и привлекли к ней внимание многих математиков.

Под некорректными (неустойчивыми) задачами обычно понимаются зада-
чи, в которых малые возмущения исходных данных могут вызывать большие
изменения результатов.

Цель работы — для рассматриваемого уравнения получить выражение
регуляризирующего оператора в интегральном виде.

Объект исследования — метод регуляризации А.Н. Тихонова.
Предмет исследования — методы приближенного решения.
Для достижения цели поставленной в работе, необходимо решить следу-

ющие задачи:
1. Изучить теоретический материал на данную тему.
2. Решить поставленную задачу для частного случая.
3. Решить задачу в общем случае.
4. Провести численный эксперимент на C++ по выяснению точности при-

ближения.
5. Проанализировать и сравнить полученные результаты.
Структура и содержание бакалаврской работы. Работа состоит из

введения, двух разделов, заключения, списка используемых источников и
приложения.
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Основное содержание работы. Во Ведении обосновывается актуаль-
ность темы работы, формулируются цель бакалаврской работы и решаемые
задачи.

В первой главе исследуется теория метода регуляризации A. H. Тихо-
нова.

Пусть X1, X2 — банаховы пространства.
Рассмотрим уравнение

Au = f, (1)

где A — линейный ограниченный оператор, действующий из X1 в X2 и такой,
что A−1 существует, но неограничен.

Обозначим через u — точное решение. через f — точную правую часть
уравнения (1). Пусть правая часть f задана её δ - приближениями fδ в про-
странстве X2 : ‖fδ − f‖X2

6 δ. Задача приближенного решения уравнения
(1) состоит в построении по fδ последовательности элементов uδ, такой, что
‖uδ − u‖X1

→ 0 при δ → 0. К такой задаче сводится ряд важных задач
математической физики, вычислительной математики, теории интегральных
уравнений, а также многие прикладные задачи.

Основополагающими работами в области некорректно поставленных за-
дач являются работы А.Н. Тихонова, М.М. Лаврентьева В.К. Иванова.

В них было положено начало теории методов решения уравнений I рода.
Эти методы называются методами регуляризации и состоят из двух прин-
ципов: I) построение семейства операторов Tα, зависящих от параметра α ,
действующих из пространстваX2 в пространствоX1 и обладающих свойства-
ми:

1. каждый из операторов Tα определён на всём пространстве X2,
2. ‖Tα‖X2→X1

<∞ при каждом значении α,
3.

∀u ∈ X1 ‖TαAu− u‖X1
→ 0, при α→ 0; (2)

II) согласование параметра α с погрешностью δ α = α(δ) такое, что

δ‖Tα(δ)‖X2→X1
→ 0, при δ → 0. (3)
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Определение 1. Семейство линейных операторов Tα, α > 0 — параметр,
удовлетворяющий условиям 1), 2), 3), называется регуляризирующим семей-
ством для уравнения (1); параметр α называется параметром регуляриза-
ции. Если соотношение (2) выполняется не на всем пространстве X1’

а для
u ∈ M ⊂ X1, где M — некоторый класс элементов из X1, то семейство {Tα}
называется регуляризирующим на классе M ; оператор Tα при фиксирован-
ном значении α называется ругуляризирующим оператором.

Если стремление к пределу (2) равномерно относительно u ∈ M ,то се-
мейство {Tα} называется регуляризирующим равномерно на классеM , а сам
класс M называется классом равномерной регуляризации.

Существование регуляризируюшего семейства является достаточным
условием для разрешимости задачи приближенного решения уравнения (1).
Действительно, из оценки:

‖Tαfδ − u‖X1
6 δ‖Tα‖X2→X1

+ ‖TαAu− u‖X1
(4)

следует, что параметр α можно так согласовать с погрешностью δ (α =

α(δ))
’
что будет выполняться (3), а отсюда следует стремление к нулю правой

части (4) при α = α(δ), δ → 0.
Таким образом, метод регуляризации — это метод приближенного реше-

ния уравнения (1) с помощью регуляризирующего семейства {Tα} при со-
гласовании α = α(δ), обеспечивающем предельные соотношения (3).Условия
же (2),(3) являются достаточными для сходимости приближенного решения
Tα(δ)fδ к точному.

Будем рассматривать метод регуляризации в применении к уравнению (1)
с оператором вложения из L2[0, 1] в C(r−1)[0, 1].

Задача приближенного решения — это задача восстановления функции
вместе c её производными по δ - приближению в L2[0, 1].

Одним из наиболее известных методов регуляризации является регуляри-
зация Тихонова. Им рассмотрен случай, когда A — интегральный оператор
с непрерывным ядром, X1 = C(r−1)[a, b], X2 = L2[a, b], а решение удовлетво-
ряет некоторым дополнительным условиям гладкости: u ∈ W r

2 [a, b], r > 1 —
целое, где W r

2 [a, b] — одномерное пространство Соболева с нормой:
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‖u‖W r
2 [a,b] =

 b∫
a

[
r∑
i=0

ki(x)(u(i)(x))2

]
dx


1
2

,

ki(x) > 0 — непрерывны. В этом методе в качестве операторов Tα выступают
операторы

Tαf ≡ Rαf = arg inf
u
Mα[u, f ];

Mα[u, f ] = ‖Au− f‖2
L2

+ α‖u‖2
W r

2 [a,b] (5)

Теорема 1 (Тихонова.). Если в уравнении Au = f A — интегральный опе-
ратор с непрерывным ядом, Rαfδ = arg inf

u
Mα

δ [u, fδ], а γ1, γ2 — константы,
независящие от α и δ, такие, что

γ1δ
2 6 α 6 γ2δ

2, (6)

то ‖Rα(δ)fδ − u‖C(r−1) → 0 при δ → 0.

Постановка задачи. Пусть X1 и X2 — два банаховых пространства, та-
ких, что X1 ⊂ X2 в теоретико-множественном смысле и выполняется оценка
‖ · ‖X2

6 C‖ · ‖X1
. Пусть элемент u ∈ X1 задан его δ—приближениями uδ

в метрике пространства X2 : ‖uδ − u‖X2
6 δ. Требуется по каждому из uδ

построить такой элемент ũδ, что ‖ũδ − u‖X1
→ 0 при δ → 0. Будем называть

поставленную задачу задачей восстановления из X2 в X1.
Такая задача возникает в частности, при обработке исходных данных фи-

зических задач. Если, например, X1 = C[a, b], X2 = L2[a, b], то мы приходим
к некорректно поставленной задаче восстановления непрерывной функции по
её среднеквадратическим δ-приближениям; если X1 = C(1)[a, b], X2 = C[a, b]

— к задаче восстановления производной функции, заданной её равномерными
δ-приближениями, т.е. в последнем случае идёт речь о приближённом реше-
нии классической некорректной задачи — задачи дифференцирования.

Поставленную в общем виде задачу восстановления мы будем рассматри-
вать как задачу решения операторного уравнения

Au = f, (7)
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где A — оператор вложения из X1 в X2, a правая часть задана её δ-
приближениями fδ в X2. Существование и единственность решения уравне-
ния (7) тривиальны.

Вывод уравнения Эйлера. Рассмотрим уравнение (7), где A — опера-
тор вложения из C(r−1)[0, 1] в L2[0, 1], точное решение имеет абсолютно непре-
рывную производную (r − 1)-го порядка(r > 1 — целое), а u(r)(x) ∈ L2[0, 1],

т.е. u(x) ∈ W r
2 [0, 1].

Считаем , что

‖u(r)‖W r
2

=

 1∫
0

[
u2(x) + (u(r)(x))2

]
dx


1
2

Рассмотрим задачу восстановления из L2[0, 1] в C(r−1)[0, 1], при этом

‖u(x)‖C(r−1) = max
06p6r−1

‖u(p)(x)‖C . (8)

Применим для нахождения приближенного решения метод регуляризации
Тихонова

Справедлива следующая теорема.

Теорема 2. Семейство операторов Rα соответствующее методу регуляриза-
ции Тихонова, имеет вид:

Rαf =
1

α

1∫
0

G(x, t,− 1

α
)f(t)dt, (9)

где G(x, t,− 1
α) — ядро резольвенты дифференциального оператора L̂, по-

рождённого дифференциальным выражением l̂y = (−1)ry(2r) + y и краевыми
условиями: y(k)(0) = y(k)(1) = 0, k = r, . . . , 2r − 1, со значением спектраль-
ного параметра λ = − 1

α .

Сходимость приближенного решения к точному.

Теорема 3. Если γ1δ
2 6 α(δ) 6 γ2δ

2, γ1, γ2 — некоторые константы, не зави-
сящие от δ, то ‖uα(δ)

δ (x)− u(x)‖c(r−1) → 0 при δ → 0.
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Определение функции Грина.

Определение 2. Функцией Грина оператора L называется функция G(x, ξ),
удовлетворяющая следующим условиям:

1. G(x, ξ) непрерывна и имеет непрерывные производные по x вплоть до
(n− 2)-го порядка включительно ∀ x и ξ ∈ [a, b];

2. При любом фиксированном ξ ∈ [a, b] функция G(x, ξ) имеет непрерыв-
ные производные (n−1)-го и n-го порядка по x в каждом из интервалов
[a, ξ) и (ξ, b], причем производная (n − 1)-го и n-го порядка имеет при
x = ξ скачок 1

p0(ξ) :

∂n−1

∂xn−1
G(ξ + 0, ξ)− ∂n−1

∂xn−1
G(ξ − 0, ξ) =

1

p0(ξ)
;

3. В каждом из интервалов [a, ξ) и (ξ, b] функция G(x, ξ), рассматривае-
мая как функция от x, удовлетворяет уравнению l(G) = 0 и краевым
условиям Uν(G) = 0, ν = 1, 2, . . . , n.

Теорема 4. Если краевая задача Ly = 0 имеет лишь тривиальное решение,
то оператор L имеет одну и только одну функцию Грина.

Докажем, что это решение существует для любой функции f(x), непре-
рывной в интервале [a, b], и определяется при помощи функции Грина.

Теорема 5. Если уравнение Ly = 0 имеет только тривиальное решение, то
для любой функции f(x), непрерывной в интервале [a, b], существует решение
уравнения Ly = f . Это решение задаётся формулой

y(x) =

b∫
a

G(x, ξ)f(ξ)dξ, (10)

где G(x, ξ) — функция Грина оператора L.

Оператор A, определённый равенством

Af(x) =

b∫
a

K(x, ξ)f(ξ)dξ,
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называется интегральным оператором с ядром K(x, ξ).
Теорема означает, что оператор L−1 есть интегральный оператор с ядром

G(x, y).
Во второй главе получаем интегральное представление регуляризирую-

щего оператора.
Рассматривается задача об обращении дифференциального оператора L̂,

который определяется дифференциальным выражением

L̂ : ly = (−1)ry(2r) + λy, (11)

и краевыми условиями:

y(k)(0) = y(k)(1) = 0, k = r, . . . , 2r − 1. (12)

где y = y(x), f = f(x), x ∈ [0, 1], λ = 1 + 1
α .

Применим равенство (10):

y(x) =

1∫
0

G(x, t, λ)f(t)dt,

где G(x, t, λ) — функция Грина.
Выводим явное выражение для функции Грина. Сначала для частного

случая(при r = 1), а потом и в общем случае.

Теорема 6. Функция Грина (11)-(12) при r = 1 имеет вид:

G(x, t, λ) =


ch ρt·ch ρ(1−x)

ρ·sh ρ , t 6 x

ch ρx·ch ρ(1−t)
ρ·sh ρ , t > x

Теорема 7. Функция Грина (11)-(12) имеет вид: 1) При r — чётном

G(x, t, λ) =

− 1
rρ2r−1∆Re[A(x, t, ρ) + C(x, t, ρ)], t 6 x

− 1
rρ2r−1∆Re[A(x, t, ρ) +D(x, t, ρ)], t > x
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2) При r — нечётном

G(x, t, λ) =



1
2r·ρ2r−1·∆ [(∆̃1(t) · eρx − ∆̃r+1(t) · e−ρx)+

+2Re[B(x, t, ρ) + C(x, t, ρ)]] + 1
2r·ρ2r−1e

ρ(x−t), t 6 x

1
2r·ρ2r−1·∆ [(∆̃1(t) · eρx − ∆̃r+1(t) · e−ρx)+

+2Re[B(x, t, ρ) +D(x, t, ρ)]] + 1
2r·ρ2r−1e

−ρ(x−t), t > x

где ρ =
2r
√
λ, ω2k+1 =

ei
(2k+1)π

2r , k = 0, . . . , r2 − 1, r — чётное,

ei
kπ
r , k = 0, . . . , r−1

2 , r — нечётное,

A(x, t, ρ) =

r
2∑

k=1

ωr2k−1(∆̃k(t) · eρω2k−1x + ∆̃r+k(t) · e−ρω2k−1x),

B(x, t, ρ) =

r+1
2∑

k=1

ωr2k−1(∆̃k(t) · eρω2k−1x − ∆̃r+k(t) · e−ρω2k−1x),

C(x, t, ρ) = ∆ ·
r
2∑

k=1

(ωr2k−1 · e−ρω2k−1x), r— чётное,

D(x, t, ρ) = ∆·
r
2∑

k=1

(ωr2k−1·eρω2k−1x), r— чётное. В случае, когда r — нечётное

в выражениях C(x, t, ρ), D(x, t, ρ) суммирование по k идёт до r+1
2 .

Заключение. Полученное выражение для функции Грина краевой зада-
чи (11)− (12) можно непосредственно использовать для нахождения прибли-
жённого решения уравнения (1) с оператором вложения вместе с производ-
ными до (r − 1)-порядка.

Тогда приближение для k-ой производной, полученной методом регуля-
ризации будет иметь вид:

dkuαδ
dxk

=
1

α

1∫
0

dk

dxk
G(x, t,− 1

α
)fδ(t), k = 0, 1, . . . , r − 1.

Основные результаты

1. Изучен теоретический материал на данную тему.
2. Найдено решение поставленной задачи для частного и общего случаев.
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3. Произведён численный эксперимент на C++ по выяснению точностиr-
приближения.

4. Произведены анализ и сравнение полученных результатов.
В приложении приводится численный эксперимент по выяснению точ-

ности приближения непрерывной функции f(x) оператором, который соот-
ветствует методу Тихонова.

Рассматривается функция f(x) = x2. Из теорем 2 и 6 выводим формулу
приближения:

Rαf =
1

α


ch ρ(1− x)

x∫
0

ch ρt · t2dt

ρ · sh ρ
+

ch ρx
1∫
x

ch ρ(1− t) · t2dt

ρ · sh ρ

 .

Интегрируем и путём реализации кода на С++ производим подсчёты Rαf

для x ∈ [0.1].
Проанализировав и сравнив полученные результаты, приходим к выводу,

что при при наименьшем α приближение при помощи оператора Rα даёт
наиболее точный результат.
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