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Благодаря применению полупроводниковых лазеров в качестве перестра-

иваемых источников когерентного излучения открываются возможности разра-

ботки систем измерения малых габаритов. Полупроводниковые лазерные авто-

динные интерферометры, имеющие оптическую обратную связь, являются од-

ним из вариантов такого рода измерителей. Данные устройства дают возмож-

ность определения характеристик нановибраций и микроперемещений, ско-

ростных и ускорительных величин. 

Проблема данного дипломного исследования заключается в том, что 

необходимо повысить точность автодинной интерферометрии расстояния с 

применением пилообразной токовой модуляции длины волны полупроводнико-

вого лазера. 

Значения точности, из которых начинались измерения абсолютных рас-

стояний по частоте модуляции фазы автодинного сигнала за счет частотной мо-

дуляции тока питания лазерного диода (FMCW), являлись очень низкими (не-

сколько миллиметров) и на сегодняшний день достигли показателей в несколь-

ко сотен и даже десятков микрон. Точность измерений при этом зависит от 

диапазона девиации длины лазерной волны.  

Целью дипломной работы является изучение того, как диапазон девиации 

влияет на точность измерения абсолютного расстояния при пилообразной мо-

дуляции длины волны излучения полупроводникового лазера. 

  Задачи дипломного исследования заключаются в: 

1. Изучении основных методов определения абсолютного 

расстояния. 

2. Исследовании формы автодинного сигнала при пилооб-

разной токовой модуляции. 

3. Осуществлении расчета зависимости между интерфе-

ренционным сигналом и спектром при пилообразной токовой моду-

ляции и величиной девиации длины лазерной волны.  



Реализация определения абсолютного расстояния посредством полупро-

водникового лазера в настоящее время осуществляется через задержку лазерно-

го импульса, при использовании методов триангулометрии  и интерферомет-

рии.  

 

Метод автодинной интерферометрии расстояния. 

Физическое явление, благодаря которому применение полупроводни-

кового лазера делает возможным детектирование колебаний - шумы, обу-

словленные обратным светом. Рассмотрим рисунок 1. 

 

Рисунок 1. Возникновение шумов от обратного света. 

При отражении света, излучаемого полупроводниковым лазером, от 

различных препятствий (внешнее зеркало, торец оптического волокна и др.) с 

последующим его возвращением в лазер с произвольной фазой, такой отра-

женный свет корректирует условия генерации лазерного устройства и оказы-

вает существенное влияние на рост модуляционных шумов интенсивности и 

шумов частотной модуляции. В связи с природой этих вносимых шумов они 

получили название шумов от обратного света. Данное явление в определен-

ной степени является характерным для всех типов лазеров, однако показатель 

отражения торцевой поверхности резонатора в полупроводниковых лазерах 

примерно на треть меньше относительно других типов лазеров, чем обуслов-



лена большая легкость проникновения обратного света внутрь резонатора и 

его более заметное влияние.  

Диаграммы, приведенные на рисунке 2, показывают зависимость коле-

баний мощности излучаемого света от интенсивности обратного света. Дан-

ное воздействие обратного света является заметным при интенсивности его 

0,003 % относительно излучаемого света, а при 5 % обратный свет уже ведет 

к импульсной генерации. 

 

Рисунок 2. Временные колебания мощности лазерного луча из-за об-

ратного света при Le=5 см и соотношении мощности обратного и излучаемо-

го света, равном нулю (а), 0,003% (б) и 5% (в). 

 

 

 

 

 

 



Автодинная интерферометрия при пилообразной модуляции дли-

ны волны лазерного излучения 

 

Благодаря применению данных шумов появляется определенная возмож-

ность измерения колебаний на микро- и наноуровнях. 

В отличие от интерференции волн по схеме Майкельсона в автодине про-

исходит интерференция падающей и отраженной волн. В результате для лазер-

ного излучения мы имеем новый резонатор, в котором возникает стоячая волна, 

а в зависимости от длины этого резонатора наблюдается усиление или ослабле-

ние собственного излучения лазерного диода. При модуляции длины волны ла-

зерного излучения на внешнем фотоприемнике будет наблюдаться модуляция 

интенсивности излучения лазерного диода. 

Поскольку при модуляции тока питания лазерного диода происходит из-

менение его мощности излучения, моделирование будем проводить при учете 

вклада в автодинный сигнал амплитудный составляющих мощности P1 и P2: 

𝑃(𝑗(𝑡)) = 𝑃1(𝑗(𝑡)) + 𝑃2 ∙ cos (𝜔(𝑗(𝑡))𝜏0(𝑡)),    (1) 

где  P1(j,(t)) – составляющая мощности, зависящая от тока питания лазер-

ного диода,  P2  – составляющая мощности, зависящая от величины отраженной 

волны через коэффициент отражения рассеивающей поверхности и зависящая 

от фокусирующих свойств оптической системы лазерного автодина. 

Моделирование автодинного сигнала проводилось при параметрах:            

=650 нм, девиация частоты излучения полупроводникового лазерного диода 

λ = 0.02 ∙ 10−9м, расстояние до объекта  L= 0.105625 м.  

Для параметров P1=10, P2=1, частоте модуляции тока питания лазера 

100 Гц на рис.3 приведен смоделированный автодинный сигнал, а на рис. 4 его 

спектр. 



 

Рисунок 3. Смоделированный автодинный сигнал при параметрах: =650 

нм, 𝜆 = 0.02 ∙ 10−9м, n=20, L= 0.105625 м 

 

Рисунок 4. Спектр автодинного сигнала, изображенного на рис.9 

На рис. 4 в спектре автодинного сигнала появились три гармоники с 

наибольшей амплитудой. Из них для определения погрешности выбираем сред-

нюю гармонику. Частота средней гармоники f=1000 Гц. Погрешность опреде-

ления расстояния по этой гармонике составляет величину 0.6 мкм, а относи-

тельная погрешность 0.000568% 

Увеличивая девиацию длины волны излучения лазера и количество мак-

симумов, для того, чтобы расстояние оставалось неизменным, рассчитываем 

абсолютную и относительную погрешности. 

При увеличении девиации до 0,1 нм на том же расстоянии до объекта 

L=0.105625 м, количество интерференционных максимумов достигнет n=1000. 

На рис. 27 приведён смоделированный автодинный сигнал при параметрах: 

=650 нм, = 0.1 нм, n=1000, L1000 = 0.105625 м.  



Таким образом, при увеличении девиации длины волны излучения лазера 

до 0,1 нм точность измерений расстояния увеличивается до половины равно-

фазного расстояния, а именно составляет 52.812 мкм на расстоянии 105,625 мм. 

 

Рисунок 5. Смоделированный автодинный сигнал при параметрах: =650 

нм, = 0.1 нм, n=1000, L = 0.105625 м 

 

Рисунок 6. Спектр автодинного сигнала, изображенного на рис. 5 



 

Рисунок 7. График зависимости абсолютной погрешности от величины 

девиации длины волны излучения лазера 

 

Рисунок 8. График зависимости относительной погрешности от величины 

девиации длины волны излучения лазера 

 



Заключение 

 

В ходе выполнения квалификационной работы были изучены методы 

определения абсолютного расстояния и их практическое применение. 

Проведено компьютерное моделирование автодинного сигнала при пило-

образной токовой модуляции с изменением величины девиации длины волны 

излучения лазера. Построены спектры автодинного сигнала при различных зна-

чениях девиации. 

Результаты компьютерного моделирования показали, что при увеличении 

девиации длины волны излучения лазера до 0,1 нм точность измерений рассто-

яния увеличивается до половины равнофазного расстояния, а именно составля-

ет 52.812 мкм на расстоянии 105,625 мм. 
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