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ВВЕДЕНИЕ

Одной из наиболее актуальных проблем в медицине является проблема

диагностики и лечения гастродуоденальной язвы, а также осложненных форм

заболевания. Показатели смертности при осложнениях язв в форме кровотече-

ния крайне высоки, но наибольшая летальность достигается среди пациентов

с продолжающимся и, особенно, рецидивным кровотечением. Решить данную

проблему сложно, поскольку зачастую процесс кровотечения протекает очень

медленно и незаметно для больного, вследствие чего врач не подозревает об

осложнении, пока оно не переходит в острую стадию. Одним из возможных

решений данной проблемы являются технологии машинного обучения, позво-

ляющие предсказывать наличие крови на эндоскопических снимках желудков

пациентов. Данные для обучения моделей предоставлены сотрудниками отде-

ления хирургии государственного учреждения здравоохранения «Саратовская

городская клиническая больница №6 имени академика В.Н. Кошелева», ко-

торые предложили интегрировать технологию нейронных сетей в методику

распознавания наличия крови в желудках пациентов.

Целью настоящей работы является построение моделей машинного обу-

чения для решения задачи классификации снимков желудка по признаку на-

личия на них крови. В рамках указанной цели были поставлены следующие

задачи:

— изучение существующих технологий машинного обучения, в том числе

многослойных нейронных сетей и трансферного обучения;

— разработка трех различных типов моделей машинного обучения, способ-

ных диагностировать наличие крови в желудке;

— определение модели, наиболее успешно справляющейся с задачей диа-

гностики наличия крови;

— разработка алгоритма извлечения данных о содержащихся на изображе-

нии цветовых диапазонах.

3



1 Теоретические аспекты машинного обучения

1.1 Общие сведения о машинном обучении

Машинное обучение — обширный подраздел науки под названием Искус-

ственный интеллект, изучающий компьютерные алгоритмы, которые автома-

тически улучшаются с накапливающимся «опытом». Алгоритмы машинного

обучения создают математическую модель на основе данных, взятых за об-

разец, которые называются «обучающие данные». Этот процесс совершается

для возможности составлять прогнозы и принимать решения, не будучи явно

запрограммированным для этого. Алгоритмы машинного обучения использу-

ются в основе различных технологий, таких как компьютерное зрение.

Несмотря на то, что машинное обучение начало развиваться не так давно

— 1990–х годах, оно быстро стало самым популярным и успешным направле-

нием ИИ. Особенно сильный толчок развития данная дисциплина получила в

первом десятилетии XXI века, что обусловлено тремя причинами [1]:

— появление большого количества накопленных данных;

— снижение стоимости параллельных вычислений;

— появление алгоритмов глубокого обучения.

Глубокое обучение — это одно из направлений машинного обучения, в

котором упор делается на последовательном изучении идущих друг за дру-

гом слоев (Layers) все более значимых представлений. Современное глубокое

обучение часто включает в себя десятки или даже сотни последовательных

слоев представлений — все они обучаются автоматически под воздействием

входных данных, в то время как другие подходы к машинному обучению ча-

сто направлены на изучение только одного или двух уровней представления

данных.

1.2 Модели машинного обучения для решения задачи классифика-

ции

Классификация в машинном обучении является одной из множества за-

дач, которые решаются с помощью обучения «с учителем», в рамках которого

задаются классы, к которым принадлежат элементы данных [2]. Модели для

классификации используют датасеты, предназначенные для обучения, и выде-

ляют закономерности, чтобы наилучшим образом сопоставить входные дан-

ные с соответствующими им метками классов, после чего итоговая точность
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моделей определяется с помощью тестовых данных, которые не участвова-

ли в процессе обучения. Для успешного решения этой задачи, используемый

тренировочный набор данных должен быть достаточно репрезентативным и

иметь много экземпляров каждого класса. Применение машинного обучения

для решения задачи классификации показывает наибольшую эффективность,

когда выходные данные имеют конечные и дискретные значения. Далее рас-

смотрены некоторые модели для решения данной задачи.

1.2.1 Линейная регрессия

Линейная регрессия используется для нахождения линейной взаимосвя-

зи между входными и выходными данными. Она относится одновременной к

области статистики и машинного обучения. Линейная регрессия подходит для

нахождения отношений между двумя непрерывными переменными. Одна из

них является предиктором или независимой переменной, а другая — ответной

или зависимой переменной. Линейная регрессия находит статистические зако-

номерности, но не детерминированные отношения. Отношение между двумя

переменными называется детерминированным, если одна переменная может

быть точно выражена через другую. Например, на основе температуры в гра-

дусах Цельсия можно точно предсказать температуру по Фаренгейту. Стати-

стическая закономерность не является точной при определении взаимосвязи

между двумя переменными. В качестве примера можно привести связь между

ростом и весом.

Основная идея заключается в том, чтобы построить линию или плос-

кость, которая наиболее точным образом описывает данные. Наилучшей в

таком случае будет являться линия, для которой суммарная ошибка прогно-

за настолько мала, насколько это возможно. Ошибка — это расстояние между

точкой и линией регрессии.

С помощью тренировочных данных, предназначенных для обучения,

строится линия регрессии, дающая минимальное значение ошибки для боль-

шинства точек. Составляется линейное уравнение Y (pred) = b0 + b1 ∗ x, впо-

следствии оно используется для любых новых данных.

1.2.2 Логистическая регрессия

Логистическая регрессия — это линейный классификатор, в котором ис-

пользуется линейная функция f(x) = b0 + b1χ1+. . .+brχr где b0, b1, . . . , br —
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это оценки коэффициентов регрессии.

Функция логистической регрессии p(x) представляет собой сигмоиду

f(x) : p(x) = 1
1+exp(−f(x)) , то есть обычно она стремится к 0 или 1. Под функ-

цией p(χ) подразумевается вероятность предсказания того, что результат вы-

ражения равен 1 при заданном x. Следовательно, 1 − p(x) — это вероятность

того, что результат выражения равен 0.

Задача состоит в том, чтобы подобрать такие коэффициенты b0, b1,. . . ,

br, при которых результат вычисления функции p(χ) будет максимально при-

ближенным ко всем фактическим ответам yi, i = 1, . . . , n, где n — ко-

личество наблюдений. Как правило, для получения наиболее точных коэф-

фициентов максимизируется функция логарифмического правдоподобия (log-

likelihood function, LLF) для всех наблюдений i = 1, . . . , n. Этот метод на-

зывается оценкой максимального правдоподобия и представлен уравнением

LLF =
∑

i=1(yi log(p(xi)) + (1− yi) log(1− p(xi))). Если yi = 0, LLF соответ-

ствующего наблюдения становится равна log(1− p(xi)).

1.3 Основные понятия теории нейронных сетей

1.3.1 Строение нейронных сетей

Нейронная сеть [3] — это набор алгоритмов, смоделированных по прин-

ципу нейронов, соединенных между собой синапсами, которые предназначены

для распознавания определенных паттернов. Структура нейронной сети при-

шла в мир программирования из биологии. Искусственный нейрон имитирует

в первом приближении свойства биологического нейрона. Распознающиеся

паттерны представляют собой числа, содержащиеся в векторах, в которые пе-

реводятся различные данные, такие как изображения, звук или текст. С помо-

щью нейронных сетей неопределенные данные группируются в соответствии

с общими чертами примеров, подающихся на вход, а уже определенный на-

бор данных для обучения классифицируется. Технология такова, что на вход

нейрона поступает некоторое множество сигналов, которые зачастую являют-

ся выходами других нейронов. Каждый вход умножается на соответствующий

вес, и все произведения суммируются, определяя уровень активации нейрона.

Несмотря на то, что архитектура сетей может различаться, в основе почти всех

лежит данная конфигурация.

Различные типы нейронных сетей используют разные принципы при
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установке своих норм. Существует много типов нейронных сетей, каждый из

которых имеет свои преимущества и недостатки.

1.3.2 Обучение нейронных сетей

Процесс обучения нейронной сети строится на том, что на вход подаются

тренировочные данные, получается ответ для них, после чего высчитывается

ошибка — процентная величина, отражающая расхождение между ожидаемым

и полученным ответом. Для этого используется функция потери (loss function).

Это метод оценки того, насколько хорошо конкретный алгоритм моделирует

данные. Постепенно, с помощью функций оптимизации, функция потерь учит-

ся уменьшать значение ошибки предсказания.

Одним из используемых в функциях оптимизации методов является ме-

тод градиентного спуска. Градиентный спуск — это алгоритм оптимизации,

идея которого заключается в нахождении локального экстремума функции с

помощью движения вдоль градиента. Градиентный спуск лучше всего исполь-

зовать, когда параметры не могут быть рассчитаны аналитически (например,

с использованием линейной алгебры), и их необходимо искать с помощью

алгоритма оптимизации. В контексте обучения нейронной сети, его использу-

ют для минимизации функции потерь. Именно на этом, например, строится

«алгоритм обратного распространения ошибки».

Алгоритм обратного распространения ошибки запускается со случай-

ными весами [4], и цель состоит в том, чтобы скорректировать их, чтобы

уменьшить эту ошибку, пока искусственная нейронная сеть не изучит трениро-

вочные данные. Комбинация весов, которая минимизирует функцию ошибки,

считается решением проблемы обучения. Алгоритм обратного распростране-

ния ошибки требует дифференцируемой функции активации, и наиболее ча-

сто используемыми являются тангенциальные и логарифмические сигмоиды

и, иногда, линейные функции.

1.4 Использование transfer learning на нейронных сетях для реше-

ния задачи классификации изображений

Трансферное обучение (Transfer learning) — это метод, позволяющий ис-

пользовать предобученную модель (то есть накопленный при решении одной

задачи опыт) для решения другой, аналогичной проблемы. Нейросеть снача-

ла обучается на большом объеме данных, затем — на целевом наборе. Как
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правило, из-за вычислительной стоимости обучения таких моделей, обычно

импортируются и используются уже готовые модели.

Большинство типов предобученных моделей, используемых в трансфер-

ном обучении, основаны на сверточных нейронных сетях (CNN), в которые

входит очень большое количество слоев [5]. Благодаря высокой производи-

тельности и легкости в обучении, в данный момент CNN преуспевает в ши-

роком спектре задач компьютерного зрения. При адаптации предобученной

модели под конкретную задачу, сначала удаляется исходный классификатор,

затем добавляется новый классификатор, соответствующий текущей задаче, и

после этого модель меняется в соответствии с одной из трех стратегий:

1. Обучение всей модели. Используется структура предобученной модели,

а обучение происходит по имеющемуся датасету. В этом случае, мо-

дель будет обучаться с нуля, поэтому при соблюдении данной стратегии

требуется большой датасет, а также высокая вычислительная мощность.

2. Обучение нескольких слоев, в то время как другие остаются «заморо-

женными». В случае, если имеется небольшой датасет и большое коли-

чество параметров, существует возможность оставить больше слоев за-

мороженными, чтобы избежать переобучения. В противном случае, если

датасет большой, а параметров немного, также можно улучшить модель

посредством увеличения обучения слоев, поскольку в данной ситуации

переобучения не возникнет.

3. Заморозка большинства слоев сверточной сети. Данная стратегия пред-

ставляет собой компромисс между обучением и заморозкой. Основная

идея заключается в том, чтобы сохранить слои CNN в первоначальном

виде, а затем использовать выходные данные для подачи в классифика-

тор. Предобученная модель используется в качестве механизма извле-

чения постоянных особенностей, что может быть полезно в случае, ко-

гда недостаточно вычислительных мощностей, маленький датасет и/или

предобученная модель уже умеет решать похожую задачу.
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2 Применение моделей машинного обучения для классификации

изображений

2.1 Описание работы

В данной работе будет реализовано конфигурирование и обучение не-

скольких моделей машинного обучения, которые будут решать задачу бинар-

ной классификации для определения наличия крови на эндоскопических сним-

ках желудка. Модели будут разделены на 2 группы:

— использующие данные, полученные в результате обработки с помощью

специального алгоритма анализа цветов на изображении;

— использующие непосредственно изображения, подвергнутые некоторой

предварительной обработке.

В качестве рабочей среды будет использоваться бесплатный облачный

сервис на основе Jupyter Notebook — Google Colab. В окружении, которое

предоставляет данный сервис, использовался язык программирования Python и

библиотеки: Numpy, OpenCV, Scikit-learn, MatPlotLib и Pytorch. Также данный

сервис предоставляет доступ к одному из GPU Nvidia: K80s, T4s, P4s или P100s

[6], который будет применяться для обучения модели на основе многослойной

нейронной сети.

2.2 Модели, которые используют данные, полученные из изображе-

ний с помощью алгоритмов компьютерного зрения

В данном разделе будут рассмотрены модели машинного обучения, кото-

рые не требуют большого количества ресурсов, таких как производительный

GPU, для реализации обучения и последующего применения для генерации

предсказаний. Чтобы построить такие модели, вместо непосредственно изоб-

ражений в качестве данных выступает информация о соотношении количества

определенных значений цветов на изображении, что значительно упрощает

формат входных данный моделей. Благодаря этому удалось применить отно-

сительно простые модели, способные решать поставленную задачу с прием-

лемой точностью.

2.2.1 Извлечение данных из изображений с помощью алгоритмов ком-

пьютерного зрения

Для получения данных о соотношении количества определенных зна-

чений цветов на изображении была разработана функция, на вход которой
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подается изображение, представленное в цветовом формате HSV. Для работы

с изображением используется библиотека OpenCV [7], именно с помощью нее

производятся предварительное считывание и перевод изображения в нужный

формат. Сначала в функции определяется размер картинки, а затем происходит

извлечение массива пикселей и переформатирование его в набор троек значе-

ний Hue, Saturation, Value и итерирование по ним с целью подсчета количества

пикселей каждого цветового значения, которое встречается на изображении (в

библиотеки OpenCV параметр Hue принимает значение в диапазоне от 0 до

179). Результатом работы функции является массив с соотношением количе-

ства пикселей для каждого цветового значения к размеру изображения.

Также было разработано 2 альтернативных варианта этой функции: в

первой — color_value_distribution_v2 производилось игнорирование пик-

селей с малыми значениями параметров Saturation и Value (данные параметры

в библиотеке OpenCV принимают значения в диапазоне от 0 до 255), так как

в таком случае независимо от значения Hue итоговый цвет пикселя слиш-

ком незначительно отличается от абсолютно черного или белого. Во второй

— color_value_distribution_v3 — 180 вариантов цветовых значений были

сгруппированы таким образом, чтобы получилось только 60.

2.2.2 Применение логистической регрессии

В данном разделе будут рассмотрены: подготовка датасета, обучение мо-

дели логистической регрессии на данных, полученных в результате примене-

ния разных вариантов функции, описанной в предыдущем разделе, к исходным

изображениям и подбор наиболее оптимальных параметров обучения.

Сначала производится считывание изображений и приведение их в цве-

товой формат HSV с помощью библиотеки OpenCV. Затем происходит разби-

ение данных на тренировочные и тестовые в соотношении 1 к 4 с помощью

метода train_test_split из библиотеки scikit-learn [8], с сохранением разде-

ления изображений по признаку наличия на них крови.

Стоит отметить, что набор данных не является сбалансированным —

изображений с кровью в нем меньше, чем без нее, но из-за относительно

малого размера датасета (менее 1000 изображений), исключать из него что-

либо в целях баланса не является целесообразным.

Для построения моделей логистической регрессии будет использовать-

ся библиотека scikit-learn. Сначала будут рассмотрены модели с параметрами,
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установленными по умолчанию. Для удобства была создана функция, с помо-

щью которой можно инициализировать и обучить все модели сразу.

Для измерения точности обученных моделей была разработана функция,

в которой происходит вычисление точности предсказаний на тренировочных

данных, отдельно на тестовых, где присутствует и отсутствует кровь, а также

суммарной точности на тестовых данных. Стоит отметить, что изначально

изображений с кровью было меньше, поэтому при подсчете общей точности

необходимо учитывать количество экземпляров каждого класса.

Далее было произведено обучение моделей на тех же данных, но с раз-

ными значениями параметра C (он отвечает за регуляризацию модели). Также

было увеличен параметр max_iter до 1000, по умолчанию он установлен на

100, и из-за этого происходило преждевременное прекращение обучения мо-

делей. Помимо этого параметр class_weight был изменен на «balanced» (он

отвечает за то, чтобы автоматически делать поправку значений весов в со-

ответствии с количеством экземпляров класса, поданных модели на вход в

процессе обучения).

Итоговая точность моделей с подобранными значениями параметров для

достижения наибольшей эффективности продемонстрирована на рисунке 1.

Рисунок 1 – Итоговая точность моделей логистической регрессии
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Из полученных данных следует, что именно модель, которая использует

исходную, не модифицированную версию функции для извлечения информа-

ция о соотношении количества определенных значений цветов на изображе-

нии, показывает наибольшую точность в классификации изображений с кро-

вью, а модель, использующая альтернативную версию функции с пороговыми

значениями для параметров Saturation и Value, показывает большую точность

при классификации изображений без крови.

2.2.3 Применение нейронной сети вида «многослойный персептрон»

В данном разделе будет рассмотрено конфигурирование и обучение ней-

ронных сетей, которые принадлежат виду «многослойный персептрон», они

будут содержать относительно небольшое количество скрытых слоев — не бо-

лее 5, такое ограничение обусловлено простотой входных данных (извлечение

которых было описано ранее) и относительно небольшим датасетом — менее

1000 экземпляров. Также будет рассмотрено улучшение точности с помощью

подбора наиболее оптимальных параметров и архитектуры моделей.

В качестве основы для построение нейронных сетей будет использовать-

ся модель MLPClassifier из библиотеки scikit-learn. Сначала будут рассмот-

рены модели с параметрами по умолчанию, в качестве функции активации

будет применяться «relu», а для обучения будет использоваться оптимизатор

«adam». Архитектура сети также будет оставлена неизменной — между вход-

ным и выходным слоем будет всего 1 скрытый на 100 нейронов.

Далее будет рассмотрен подбор оптимальных параметров обучения для

вышеописанных моделей нейронных сетей. В рамках него будет подбирать-

ся количество скрытых слоев и число нейронов на каждом их них (пара-

метр hidden_layer_sizes), а также количество циклов обучения (параметр

max_iter). Для реализации подбора будет использоваться вспомогательный

инструмент из библиотеки scikit-learn — GridSearchCV, он перебирает все

возможные комбинации параметров, высчитывает точность, используя кросс-

валидацию, и выдает наиболее оптимальный набор.

В результате были получены оптимальные конфигурации для трех моде-

лей, использующих разные данные для обучения. Для более детального рас-

смотрения полученных результатов и визуализации обучения моделей были

построены графики зависимости значений точности от количества итераций

обучения (параметр max_iter). После подбора наиболее оптимальных пара-

12



метров для всех моделей были посчитаны итоговые характеристики точности,

полученные результаты проиллюстрированы на рисунке 2.

Рисунок 2 – Итоговая точность нейронных сетей

2.3 Модель, которая работает непосредственно с изображениями

В данном разделе будет рассмотрена модель машинного обучения, кото-

рая требует относительно много ресурсов для реализации обучения и после-

дующего применения для генерации предсказаний. Так как датасет содержит

малое количество изображений (менее 1000) будет применяться технология

трансферного обучения, потому что для полноценного обучения сверточной

нейронной сети с нуля требуется гораздо больше данных.

2.3.1 Применение предобученной многослойной нейронной сети с по-

следующим ее дообучением

В данном разделе будет рассмотрено использование нейронной сети

ResNet34 [9], предобученной на датасете ImageNet, для классификации сним-

ков желудков по признаку наличия на них крови. Для этого будет реализовано

дообучение нескольких последних слоев сети на имеющихся изображениях

желудков.

Была произведена инициализация модели и конфигурирование слоев та-

ким образом, чтобы при обучении обновлялись только последние 15 наборов
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параметров сети (всего их в данном случае 110). Далее было реализовано

переопределение полносвязного слоя (расположенного на выходе нейронной

сети) таким образом, чтобы он соответствовал ожидаемым выходным значе-

ниям (в данном случае имел бы 2 выхода) и преобразование модели, чтобы ее

можно было обучать с помощью GPU, а также инициализация loss функции и

оптимизатора.

Для подсчета точности модели в процессе обучения была создана функ-

ция, в которой сначала происходит перевод модели в режим работы (оценки

точности) и помещение кода в область, где не будет высчитываться градиент.

Затем происходит проход по группам тестовых данных, получение предска-

заний от нейронной сети, преобразование их в numpy array и высчитывание

точности на основе сопоставления полученных результатов и ожидаемых ме-

ток для каждого из изображений. Модель затем обратно переводится в режим

обучения, а на выходе возвращается итоговая точность на тестовых данных.

Обучение происходит в течение 30 итераций (уже после получения ре-

зультатов их количество можно сократить, чтобы избежать переобучения).

Модель переводится в режим обучения, а затем для каждой группы данных

из сформированного ранее dataloder происходит их преобразование, что-

бы можно было использовать эти данные при вычислениях на GPU. Затем

происходит обнуление градиента, получение предсказаний сети, подсчет loss

функции и вычисления градиента, а потом обновление параметров модели на

основе полученных данных. В конце каждой итерации обучения подсчитыва-

ется тестовая точность модели, чтобы затем можно было проанализировать то,

как обучалась нейронная сеть.

В итоге после подбора оптимального количества итераций обучения мо-

дель, основанная на дообученной сверточной нейронной сети ResNet34, по-

казала очень высокую точность, результаты продемонстрированы на рисунке

3.

Рисунок 3 – Итоговая точность предсказаний модели, полученной в результате применения
трансферного обучения
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ЗАКЛЮЧЕНИЕ

В ходе выполнения данной работы были изучены существующие тех-

нологии машинного обучения, в том числе многослойные нейронные сети и

трансферное обучение. Были разработаны три различных вида моделей ма-

шинного обучения, способных диагностировать наличие крови в желудке, и

была определена модель, наиболее успешно справляющейся с поставленной

задачей. Также был разработан алгоритм извлечения данных о содержащихся

на изображении цветовых диапазонах.
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