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ВВЕДЕНИЕ

Человеческий мозг - невероятно сложная структура, способная обраба-

тывать данные нелинейно и параллельно, а также структурно самоорганизо-

вываться, перестраивая нейронные связи. С самого рождения мозг обладает

достаточной сложностью и потенциалом для того, чтобы начать выстраивать

собственные правила поведения через то, что мы обычно называем опытом,

адаптируясь к окружающему миру.

В процессе изучения функционирования нейронов и их связей удалось

создать математические модели для проверки различных теорий. Выяснилось

что эти модели не только повторяют функции мозга, но и способны выполнять

задачи, имеющие собственную ценность. Это и стало фундаментом искуствен-

ных нейронных сейтей.

Одной из задач нейронных сетей сегодня является сегментация изобра-

жений. Идея состоит в том, чтобы для любого входного изображения получить

карту всех обнаруженных на этом изображении объектов (маску). Основная

проблема данной задачи заключается в подготовке данных для обучения ней-

ронной сети, так как на этапе подготовке требуется огромный человеческий

труд. Необходимо, чтобы для каждого входного изображения, которое будет

участвовать в обучении сети, была сделана максимально точная маска.

Однако, не так давно была выдвинута идея интерактивной сегмента-

ции [1]. Идея заключается в использовании уже предобученной нейронной

сети для сегментации изображений, при этом от пользователя требуется лишь

размещать положительные и отрицательные метки, на основе которых вы-

считывается карта расстояний, оптимизирующая предсказание используемой

нейронной сети. Вскоре эта идея была улучшена несколькими исследователя-

ми из компании Samsung [2], позволяя оптимизировать не только человеческий

труд, но и время работы данного подхода.

Задачи:

- изучить основы нейронных сетей.

- исследовать сверточные нейронные сети.

- реализовать программу, обучающую сверточную нейронную сеть с ис-

пользованием интерактивной сегментации.

- cравнить результаты предсказаний с нейронными сетями, обученными

на изображениях, сегментированных вручную.
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1 Нейронные сети

1.1 Общие сведения

Нейронную сеть можно рассматривать как отлично распараллеленный

и распределенный обработчик данных, который имеет склонность к накопле-

нию эмпирических знаний и делает их доступными для использования [3].

Нейронные сети напоминают мозг по двум причинам:

1. Знания приобретаются сетью из внешнего мира во время обучения.

2. Сила связей между нейронами, которую еще называют синаптическими

весами, используется для хранения полученных знаний.

1.2 Модель нейрона

Нейрон - основная единица обработки информации, являющаяся фунда-

ментом для проектирования большого семейства нейронных сетей.

Выделяется три основных компонента нейронной модели:

1. Набор синапсов, или связей, каждая связь характеризуется весом (си-

лой). Например, сигнал xj, на входе синапса j, соединенного с нейроном

k умножается на вес wjk. Синаптический вес может принимать как по-

ложительные, так и отрицательные значения.

2. Сумматор - суммирующий входные сигналы с учетом весов.

3. Функция активации, также ее называют функцией сжатия - ограничивает

(сжимает) входную сумму до допустимого диапазона значений.

1.3 Алгоритм обратного распространения ошибки

Настоящим толчком в развитии нейронных сетей послужило появление

теоретический обоснованного алгоритма обучения многослойных сетей [4].

На начальном этапе обучения, всем весам сети должны быть присвоены

начальные значения. После приготовительных действий следует следующий

цикл обучения:

1. Производится выбор очередной обучающей пары из обучающего мно-

жества. Входной вектор пары подается на вход нейронной сети.

2. Вычисляется выход сети.

3. Вычисляется разность между выходом сети и требуемым выходом из

обучающей пары.

4. Веса сети корректируются так, чтобы минимизировать ошибку.
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Цикл повторяется на всем обучающем множестве до тех пор, пока не

будет достигнута ошибка приемлемого уровня.

1.4 Программные библиотеки для обучения нейронных сетей

Основным структурным блоком библиотек машинного обучения явля-

ется тензор. Фактически, тензор - объект, линейно преобразующий элементы

одного линейного пространства, в элементы другого. В рамках библиотек,

тензорами называют многомерные массивы, которые имеют дополнительный

функционал, позволяющий им работать с гпу.

Следующей важной части подобных библиотек является модуль, кото-

рый позволяет автоматизированно выполнять вычисление градиента, для вы-

полнения обучения.

Наконец, подобные библиотеки содержат уже готовые реализации раз-

личных слоев нейронных сетей, метрик, функций активации и потерь, а также

различных оптимизаторов, делающих их использование очень удобным.
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2 Сегментация

2.1 Общие сведения

Задача сегментации является одной из самых сложных задач компью-

терного зрения. Под сегментацией понимают процесс выделения областей

объектов на изображениях.

2.2 Сверточные нейронные сети

В нейронных сетях, состоящих из слоев нейроннов, которые соедине-

ны друг с другом есть проблемы, которые делают их неэффективными при

сегментации изображений. Во-первых, подобные сети имеют большое коли-

чество весов. Во-вторых, теряется информация о топологии бъектов на нем,

так как сеть анализирует соседние пиксели только по горизонтали. Сверточ-

ные нейронные сети спроектированы таким образом, что они могут учитывать

пространственные входные структуры. Такие сети основываются на примене-

нии операций свертки к входным данным, из-за чего и получили свое название.

Основной идеей сверточных сетей является создание таких слоев, признака-

ми в которых могут служить ядра свертки. Обучение происходит по тому же

принципу, что и обучение перцептронов: алгоритм обратного распространения

применятся к ядрам свертки.

2.3 Интерактивная сегментация

В 2019 году на конференции IEEE двумя исследователями из гарвард-

ского и корейского университетов была предложена схема интерактивной сег-

ментации для сверточных сетей, названная схемой обратного уточнения (анг.

Backpropagating Refinement Scheme). Согласно этой схеме, пользователь дела-

ет положительные и отрицательные метки на сегментируемом изображении,

затем выполняется прямой проход по сети с учетом этих меток, а после этого

выполняется обратный проход с ограничениями в областях меток.

Она получилась эффективной и показала хорошие результаты, однако,

нужны большие затраты с точки зрения вычислений за счет того, что обратное

распространение ошибки выполняется итеративно. В 2020 году нескольки-

ми исследователями из компании Samsung было разработано улучшение этой

схемы [2], благодаря этому улучшения обратное распространение необходимо

выполнять только для части сети, что дает прирост скорости вычислений.
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3 Практическая часть

3.1 Общие сведения

Для достижения целей данной работы было разработано приложение,

позволяющее обучать сверточные нейронные сети и пользоваться интерактив-

ной сегментацией на языке программирования python.

Для реализации обучения нейронных сетей была выбрана библиотека

pytorch, обладающая высокой эффективностью вычислений и удобством. Так-

же благодаря большому количеству пользователей, можно легко найти вопро-

сы на интересующие вопросы и готовые примеры, выполненные с использо-

ванием pytorch.

С помощью реализованной программы можно выполнить следующий

цикл обучения нейронной сети:

1. Разметка обучающей выборки

2. Обучение

3. Сегментирование части новых изображений на обученной сети

4. Сегментация плохо сегментированных изображений с помощью интер-

активной утилиты

5. Повторение шагов 2 - 4 для новых изображений

Для исследования была выбрана уже размеченная обучающая выборка

CamVid [5]. Эта обучающая выборка состоит из более чем семисот сегменти-

рованных изображений. Эти изображения были получены при съемке дорог в

Кембридже, на каждом из этих изображений размечены различные объекты,

начиная от неба, и заканчивая велосипедами. Для исследования был выбран

класс машин.

3.2 Использованные архитектуры нейронных сетей

Для исследований была выбрана нейронная сеть с пирамидальной архи-

тектурой (анг. Feauture Pyramid Network). Подобные сети показывают хорошие

результаты в различных приложениях. Главной особенностью такой архитек-

туры является то, что она устойчива к масштабу входных данных. Также пира-

мидальные сети являются достаточно небольшими, чтобы эффективно обучать

их на среднем домашнем компьютере.

В дополнение к ней, для проведения исследований, была выбрана свер-

точная сеть ResNet [6]. Данная сверточная сеть показала хорошие результаты
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во многих областях компьютерного зрения, в том числе и сегментации. Так же

в ее архитектуре была применения революционная идея соединений быстрого

доступа (анг. shortcut connections).

Основой соединений быстрого доступа было создание таких слоев, пре-

образование в которых, не меняли бы размер входных данных, а после выпол-

нения преобразований полученный результат складывался бы с исходными

данными. Таким образом, при обратном проходе сильно уменьшается вероят-

ность затухания градиента и паралича сети.

В качестве функции потерь выбрана метрика Dice loss/ F1 score, которая

схожа с коэффициентом Жаккара и часто используется в качестве функции

потерь при обучении сверточных нейронных сетей.

3.3 Описание разработанного приложения

Первая вкладка реализованной программы предназначена для первона-

чальной настройки взаимодействия с ней. На этой вкладке необходимо за-

дать пути до основных директорий операционной системы, которые будут ис-

пользованы для работы. Также данная вкладка позволяет загрузить «CamVid»

обучающую выборку и подготовить ее для работы с другими компонентами

приложения.

На второй вкладке предусмотрены элементы управления для обучения

нейронной сети на текущей обучающей выборке. Здесь можно настроить па-

раметры обучения, а также посмотреть текущее состояние значений метрик.

После обучения нейронной сети можно пробовать сегментировать новые

изображения с ее помощью. С помощью элементов управления, расположен-

ных на третьей вкладке приложения, можно указывать количество (в процент-

ном соотношении) изображений из исходной обучающей выборки, который

будут подготовлены для сегментации, а затем сегментировать их, при этом в

нейронную сеть будут загружены веса из последней сохраненной контрольной

точки и начнется сегментация с ее помощью. Также, на этой вкладке можно

открыть для просмотра сегментированные изображения, а также применить к

ним интерактивную сегментацию.
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4 Исследование результатов обучения с применением

интерактивной сегментации

Цель создания программы, описанной в практической части - исследо-

вание обучения с применением интерактивной сегментации. Для этого было

проведено два эксперимента, для того чтобы сравнить результаты для разных

нейронных сетей.

Цель экспериментов - сравнить качество масок, предсказанных сетью

обученной с применением интерактивной сегментации и обученной на выбор-

ке, сегментированной вручную. Для этого использовалась обучающая выборка

CamVid, а в качестве объектов для сегментации были выбраны машины.

4.1 Исследование FPN + ResNet50

Исследование проводилось согласно алгоритму, описанному в практиче-

ской части.

В качестве подготовки была загружена обучающая выборка CamVid. За-

тем с помощью функций реализованного приложения была подготовлена для

использования. После этого в качестве начальной обучающей выборки для

FPN + ResNet50 было подготовлено 34 изображения.

Для тестирования во время обучения использовалось 30% от начальной

выборки, размер шага обучения была задан равным 8, количество эпох - 10.

После обучения было подготовлено 33 изображения для сегментации с

помощью обученной сети.

После сегментации изображения были добавлены к текущей обучающей

выборки.

На следующей итерации обучающая выборка содержит 67 изображений.

Для тестирования во время обучения было использовано 15% изображений

текущей выборки.

Во время каждого обучения веса нейронной сети сохранялись, если зна-

чение коэффициента Жаккара превышало последнее максимально значение.

Данный цикл выполнялся до тех пор, пока улучшалось значение коэффициен-

та Жаккара. Во время обучения процент изображений, использующихся для

тестирования корректировался таким образом, чтобы тестирующая выборка

не превышала 15-20 изображений.
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4.2 Исследование FPN + ResNet101

Исследование проводилось согласно алгоритму, описанному в практиче-

ской части.

В качестве подготовки была загружена обучающая выборка CamVid. За-

тем с помощью функций реализованного приложения была подготовлена для

использования. После этого в качестве начальной обучающей выборки для

FPN + ResNet101 было подготовлено 34 изображения. ResNet101 содержит

большее количество сверточных слоев, по сравнения с ResNet50.

Данная сеть обучилась за довольно короткое количество эпох, но показа-

ла результаты немного более плохие чем сеть из предыдущего исследования.

При этом значения метрик сети, обученной на изображениях, сегментирован-

ных вручную, были очень близкими.
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ЗАКЛЮЧЕНИЕ

Сегодня область компьютерного зрения популярна как никогда. Сегмен-

тация изображений, как составная ее часть, используется в большом количе-

стве приложений. Она может быть применена и используется в сферах ме-

дицины, банковского дела, а также при распознавании объектов в реальном

времени, например, для создания беспилотных автомобилей.

Исследования в области нейронный сетей также очень популярны, из-за

того, что нейронные сети можно применять для решения задач компьютерного

зрения. А также потому что в современном мире можно с легкостью получать

большие массивы данных, обработка которых, помогает повысить качество

предсказаний. При этом различные проводимые конкурсы показывают, что

уже сейчас некоторые нейронные сети способны показывать результаты пред-

сказаний лучше, чем это делает человек.

Было проведено два исследования. Результаты исследований показали,

что с помощью интерактивной сегментации можно значительно ускорить под-

готовку обучающей выборки, однако, существует ряд проблем. Во-первых,

интерактивная сегментация основывается на таком же предсказании с исполь-

зованием нейронных сетей, а это означает, что для получения хороших ре-

зультатов, необходимо обучить нейронную сеть, которая будет использоваться

в дальнейшем. Здесь встает вопрос о ручной сегментации и о том, какую

лучше архитектуру подобрать для получения наилучшего качества сегменти-

рования. Во-вторых, маски, создаваемые интерактивно могут получаться не

такими точными, как маски, сегментированные вручную.

Подводя итог можно отметить, что области компьютерного зрения, сег-

ментации изображений и машинного обучения не утратят интерес исследова-

телей в ближайшее время. С каждым годом можно видеть все более лучшие

результаты, которые теперь находятся очень близко к возможностям человека

по качеству, и значительно опережают его по быстродействию. Интерактивная

сегментация может стать отличным инструментом, который поможет сокра-

тить большие трудозатраты на обучение нейронных сетей, однако пока он не

обладает достаточно хорошей точностью для получения наилучших результа-

тов.
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