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ВВЕДЕНИЕ

Сегодня мир невозможно представить без финансовых институтов. В

свою очередь современный финансовый институт невозможно представить

без развитой IT-инфраструктуры. Будь то удобное мобильное приложение для

клиентов либо высоко-функциональное программное обеспечение для сотруд-

ников.

С каждым годом финансовые учреждения наращивают IT потенциал и

постепенно превращаются в IT-компании, предоставляющие широкий спектр

услуг свои клиентам. Сегодня банковская – это вторая отрасль после IT по

количеству рабочих мест для разработчиков, системных аналитиков, админи-

страторов баз данных и т.д.

Одной из важнейших IT систем банка является база данных (далее БД).

В ней хранятся: персональные данные клиентов и сотрудников, данные по

всем финансовым операциям, данные по продуктам и услугам и т.д. Наличие

такого реестра данных является обязательным для всех без исключения банков

и регламентируется законом о банках и их деятельности.

Тема данной работы связана с существующим проектом и описывает

этапы его реализации. Данный проект разработан в рамках минимизации фи-

нансовых и операционных банковских рисков. Заказчиком проекта выступает

коммерческий банк основной функцией которого является потребительское

кредитование физических лиц.

Целью работы является применение методов Business

intelligence (далее BI), таких, как агрегация и денормализация данных, а также

методов оптимизации запросов к БД. Реализуемый в работе проект призван

систематизировать данные в более удобный для анализа и чтения вид.

3



1 Методы проектирования системы

1.1 Выбор технологии

1.1.1 СУБД

Проект выполнен в объектно-реляционной СУБД Oracle Database 11g.

Как среда разработки используется PL/SQL Developer.

Существует огромное количество определений «баз данных». Для бака-

лаврской работы было выбрано определение за авторством Коннолли Томас

и Бегг Каролин. База данных — совместно используемый набор логически

связанных данных (и описание этих данных), предназначенный для удовле-

творения информационных потребностей организации [1].

Система управления базами данных (DBMS) - комплекс программ, поз-

воляющих создать базу данных и манипулировать данными (вставлять, обнов-

лять, удалять и выбирать). Система обеспечивает безопасность, надежность

хранения и целостность данных, а также предоставляет средства для админи-

стрирования БД.

Базы данных можно классифицировать по модели данных. Модель дан-

ных — это определение операторов и объектов, составляющих в купе абстракт-

ную машину доступа к данным, с которой взаимодействует пользователь. Эти

операторы позволяют моделировать поведение данных, а объекты — структуру

данных.

1.1.2 Хранилище данных

Корпоративное хранилище данных (DWH) – предметно-ориентированная

информационная база данных, специально разработанная и предназначенная

для подготовки отчетов и бизнес-анализа с целью поддержки принятия реше-

ний в организации [2].

Основные источники данных для проекта:

• Корпоративное хранилище данных (далее КХД);

• Денормализованные витрины данных Antifraud.

Хранилище данных, с которым предстоит работать при разработке про-

екта является нормализованным, данные находятся в предметно ориентиро-

ванных таблицах третьей нормальной формы.
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Нормальная форма — свойство отношения в реляционной модели дан-

ных, характеризующее его с точки зрения избыточности, потенциально при-

водящей к логически ошибочным результатам выборки или изменения дан-

ных. Нормальная форма определяется как совокупность требований, которым

должно удовлетворять отношение. Конечной целью нормализации является

уменьшение потенциальной противоречивости хранимой в базе данных ин-

формации [3].

Для того, чтобы дойти до конечного пользователя, данные несколько раз

преобразовываются:

• Шаг 1. Автоматизированная банковская система формирует данные в

транзакционной базе данных (OLTP);

• Шаг 2. При помощи процессов ETL данные извлекаются, преобразовы-

ваются и записываются в корпоративное хранилище данных;

• Шаг 3. Данные денормализуются и записываются в витрины Antifraud.

OLTP (Online Transaction Processing), транзакционная система — обра-

ботка транзакций в реальном времени. Способ организации БД, при котором

система работает с небольшими по размерам транзакциями, но идущими боль-

шим потоком. При этом клиенту требуется от системы минимальное время

отклика.

ETL (Extract, Transform, Load) — один из основных процессов в управ-

лении хранилищами данных, который включает в себя:

• извлечение данных из внешних источников;

• их трансформация и очистка, чтобы они соответствовали потребностям

бизнес-модели;

• и загрузка их в хранилище данных.

Business intelligence (сокращенно BI) — обозначение компьютерных ме-

тодов и инструментов, обеспечивающих перевод транзакционной деловой ин-

формации в человекочитаемую форму, пригодную для бизнес-анализа.

Для извлечения данных воспользуемся базовыми принципами BI:

• Многомерная агрегация и размещение данных в витринах;

• Денормализация таблиц баз данных.
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1.2 Язык PL/SQL

PL/SQL - это процедурный блочно-структурированный язык. Он пред-

ставляет собой расширение языка SQL и предназначен для работы с СУБД

Oracle.

Основной программной единицей PL/SQL является блок, который может

содержать вложенные блоки, называемые иногда подблоками. Блок позволяет

объединять объявления и операторы, связанные общей логикой; может быть

анонимным и именованным. Блок состоит из трех основных частей:

• Секция объявлений (необязательная часть);

• Тело блока;

• Обработчики исключений (необязательная часть).

Язык PL/SQL позволяет определять следующие типы именованных бло-

ков, которые могут быть скомпилированы и сохранены как объекты базы дан-

ных в некоторой её схеме:

• Процедуры;

• Функции;

• Объекты;

• Пакеты.

Язык PL/SQL поддерживает следующие операторы управления в блоках:

• Операторы выбора (IF, CASE);

• Операторы цикла (LOOP, WHILE, FOR);

• Операторы безусловного перехода (GOTO, NULL).

1.3 Оптимизация

1.3.1 Индексы

Индекс — объект базы данных, создаваемый с целью повышения произ-

водительности поиска данных. Ускорение работы с использованием индексов

достигается в первую очередь за счёт того, что индекс имеет структуру, опти-

мизированную под поиск — например, сбалансированного дерева [4].

Простейшим примером применения индексов в реальной жизни является

оглавление книги. Вместо перебора всех страниц книги читателю достаточно

найти конкретную главу на странице оглавления.
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Индексы имеют две базовые функции:

• увеличение скорости доступа к данным;

• поддержка уникальности данных.

1.3.2 Секционирование

Сегодня секционирование — является основным инструмент для созда-

ния, больших по объему данных, таблиц имеющие жесткие требования к про-

изводительности. При помощи секционирования архитекторы и администра-

торы БД могут решать ряд сложных проблем [5].

Объекты БД (таблицы и индексы) секционируются при помощи ключа

секционирования – это столбец или набор столбцов, который определяет, в

какую секцию будет попадать запись.

С помощью конструкции ADD PARTITION, в рамках DDL-операции

ALTER TABLE, возможно добавить секции к верхнему пределу существу-

ющей секционированной таблицы. Если авто-секционирование в таблице не

предусмотрено, то применение данной конструкции можно автоматизировать

в рамках блока PL/SQL.

1.3.3 Автоматизация

Планировщик заданий – это пакет, который позволяет запускать блоки

PL/SQL по-определенному расписанию исходя из условий заданных пользо-

вателем.

Помимо автоматизации планировщик задач позволяет разработчику оп-

тимизировать ресурсоемкую задачу по времени за счет распараллеливания

выполнения расчетов. При этом не стоит забывать, что такой подход к выпол-

нению задачи будет использовать дополнительные сессии пользователя.

1.3.4 Подсказки оптимизатору

Важным фактором при оптимизации процесса является скорость работы

SQL запроса. Причины тому могут быть следующие:

• Плохая статистика по таблицам и индексам запроса;

• Проблемы с индексами в запросе;

• Проблемы с хинтами (подсказками) в запросе;

• Неэффективно построенный запрос.
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При построении SQL-запроса разработчику важно уметь пользоваться

планом запроса. Зачастую оптимизатор строит план выполнения SQL-запроса

не оптимально, основываясь на собственной статистике. Избежать «плохо-

го» сценария выполнения позволяют подсказки. Подсказка (hint) — средство,

позволяющее явным образом влиять на план запроса.

Сам SQL-запрос содержит указание, какую информацию необходимо по-

лучить из базы данных, но не содержит указаний, каким образом это делать.

В общем случае, реляционные СУБД по собственным правилам определяют

план запроса и, соответственно, его выполняют. Однако на практике может

возникнуть случай, что такой план запроса, в силу неучтённых средствами

СУБД факторов, несовершенства логики или особых требований может ока-

заться неоптимальным. Подсказка позволяет явно вмешаться в формирование

плана запроса, не полагаясь полностью на автоматику [4].

8



2 Разработка системы

2.1 Системный анализ

Поскольку задача на реализацию пришла в виде бизнес-требования, бы-

ло сформировано техническое задание. Техническое задание (ТЗ) – документ,

где зафиксированы требования к решениям, которые должны быть реализова-

ны в ходе создания программного обеспечения (ПО).

Требование к системе были не полные. В частности правила могут ме-

няться, удалятся и добавятся с течением времени (перечень правил в ТЗ был

опушен). В связи с этим была выбрана гибкая методология разработки (Agile).

Agile (гибкая методология разработки) - это философия призванная увеличить

эффективность модели разработки.

Данная методология позволит работать с нечеткими бизнес требовани-

ями, показать работающий продукт как можно раньше и внедрять модули

(привила) постепенно.

Архитектура системы, исходя из технического задания, состоит из пакета

содержащего модули (правила) и реестра, куда будут записываться данные по

итогу работы модулей системы.

При анализе кредитного портфеля было решено секционировать основ-

ную таблицу CPM_TRIGGERS_CREDIT_BLANKS по полю CPM_TRIGGER. Портфель

кредитных анкет составляет около 16 млн. шт. с начала 2018 года. Количество

правил согласно ТЗ равно 64 шт. На сегодняшний день количество записей в

основной таблице будет составлять 16000000 × 64 = 1024000000 шт. Каждое

новое правило, в дальнейшем, будет добавлять к таблице, как минимум, 16

млн. записей.

2.2 Объекты БД

2.2.1 Создание таблиц

Таблица - это объект базы данных состоящий из совокупности связанных

данных, хранящихся в структурированном виде. Она состоит из столбцов и

строк [6].

Реестр системы состоит из четырех таблиц: основная таблица, справоч-

ник правил, сводная таблица и журнал работы правил.

Основная таблица CPM_TRIGGERS_CREDIT_BLANKS содержит правила, ан-

кеты и признаки по ним в нормальной форме.
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Таблица справочник CPM_TRIGGERS_DICT помимо расшифровки привил,

будет выполнять функцию управляющей таблицы. Каждое правило в систе-

ме обращается к справочнику и проверяет признак активности в столбце

IS_ACTIVE.

Сводная таблица CPM_TCB_PIVOT необходима, для агрегации данных из

основной таблицы и ускорения поиска сработавших правил на анкету для

пользователей.

Журнал CPM_TRIGGERS_LOGS собирает данные по итогам работы правил.

Таблица поможет осуществлять мониторинг работы системы.

2.2.2 Создание индексов

Для основной таблицы CPM_TRIGGERS_CREDIT_BLANKS создаем локаль-

ный секционированный индекс по полю IDBLANK. Уникальным ключом табли-

цы является совокупность полей IDBLANK и CPM_TRIGGER.

Индекс для словаря CPM_TRIGGERS_DICT, на данный момент, не требует-

ся, поскольку количество записей в таблице относительно мало.

Для сводной таблицы CPM_TCB_PIVOT создаем два глобальных индекса

по полям IDBLANK и IDCLIENT. Поле IDBLANK является уникальным ключом

таблицы.

2.2.3 Создание пакета

Пакет — это объект базы данных, который группирует логически связан-

ные типы, программные объекты и подпрограммы PL/SQL [7].

Пакет состоит из двух частей: спецификация и тело. Спецификация па-

кета - это интерфейс с объявленными приложениями из тела. Тело пакета

определяет подпрограммы и содержит скрытые детали реализации.

В теле пакета правила будут реализованы как отдельные хранимые про-

цедуры. Хранимая процедура — объект базы данных, представляющий собой

набор SQL-инструкций, который компилируется один раз и хранится на сер-

вере [8].

В основной процедуре RUN_JOBS будем запускать расчет каждой груп-

пы правил в параллельных сессиях за счет использования самоуничтожа-

ющихся заданий. Каждая итерация запуска заданий нумерует их с помо-

щью последовательности (SEQUENCE) SEQ_CPM_TRIGGERS. Последователь-

ность (SEQUENCE) – это объект базы данных, который генерирует целые
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числа в соответствии с правилами, установленными во время его создания [9].

2.2.4 Создание заданий (JOBS)

Расчет правил в системе будет запускаться ежедневно, автоматически по

расписанию. Расчет основного реестра будет начинаться в 20:00 по МСК в

задании J_CPM_TRIGGERS.

Расчет сводной таблицы будет начинаться в 6:00 по МСК в задании

J_CPM_TRIGGERS_PIVOT.

2.3 Формирование запросов к БД

2.3.1 Оператор MERGE

Сердцем каждого правила будет конструкция MERGE. MERGE - DML-

оператор языка SQL, который позволяет слить данные одной таблицы с дан-

ными другой таблицы или подзапроса. При слиянии проверяется условие, и

если оно истинно, то выполняется UPDATE, а если нет - INSERT.

2.3.2 Конструкция CASE

Для преобразования данных из источника внутри MERGE будет использо-

ваться подзапрос в предложении USING. Основой данного запроса является

конструкция CASE. CASE - это инструкция, которая проверяет список условий

и возвращает соответствующий результат. Если говорить в целом о программи-

ровании, то CASE - это что-то вроде многократного использования конструкции

IF-ELSE [10].

CASE возвращает результат первого выражения THEN, условие которого

выполнилось, т.е. WHEN возвращает TRUE. Таким образом, если CASE содер-

жит несколько эквивалентных условий WHEN, которые будут возвращать TRUE,

вернется результат (указанный в THEN) первого выражения [11].

2.3.3 Групповые функции

Для получения данных один к одному будем использовать групповую

функцию. Групповые функции работают на наборах строк, чтобы выдать один

результат на группу.

Как правило групповые функции используют с оператором GROUP BY, он

позволяет группировать результат функции по полям (столбцам) для получе-

ния результирующих значений в каждой группе.
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2.3.4 Аналитические функции

Основной целью аналитических функций является увеличение скорости

выполнения запросов выявляющих внутренние отношения и зависимости в

данных. Дополнительно они позволяют дать лаконичную формулировку «ана-

литическим запросам».

Основное преимущество использования аналитических (оконных) функ-

ций над агрегационными функциями заключается в следующем: оконные функ-

ции не приводят к группированию строк в одну строку вывода, строки сохра-

няют свои отдельные идентификаторы, а агрегированное значение добавляется

к каждой строке. При этом групповые функции могут быть использованы как

оконные.

Предложение PARTITION BY определяет столбец, по которому будет про-

изводиться группировка, и он является ключевым в разбиении набора строк

на окна. Вместе с PARTITION BY может применяться предложение ORDER

BY, которое определяет порядок сортировки внутри окна. Порядок сортиров-

ки очень важен, ведь оконная функция будет обрабатывать данные согласно

этому порядку [12].

2.4 Журналирование

Функцию журналирования работы правил выполняет отдельная проце-

дура внутри соответствующего пакета.

Вызов процедуры осуществляется на последнем этапе работы каждого

правила. На вход она принимает три параметра: начало работы правила, номер

правила и сумму модифицированных строк. Внутри себя процедура вычисляет

количество минут работы правила и проверяет целостность реестра. Результат

записывает в журнал CPM_TRIGGERS_LOGS.

Следующий этап - реализовать ежедневное информирование по резуль-

татам работы системы с помощью электронной почты. Формировать отчет-

ность будем в отдельном пакете предназначенным для отправки подобных

писем. Для наглядности отчет сформируем в формате HTML.

После того как отчет будет сформирован, он отправляется электронным

письмом на ответственных сотрудников. Тем самым происходит ежедневный

мониторинг работы системы.
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2.5 Принцип работы системы

После завершения разработки, но перед введением системы в эксплу-

атацию, требуется внести в реестр исторические данные. Это обязательный

этап, поскольку правила захватывают анкеты только за последние 30 дней. Та-

кое ограничение глубины выборки требуется в целях быстродействия работы

системы.

Следующий этап - тестирование, т.е. проверка записанных в реестр дан-

ных на корректность. Дополнительно требуется сверить данные основной и

сводной таблиц.

Перед началом эксплуатации системы, пользователи должны ознако-

миться с принципами её работы. Для этого была создана техническая докумен-

тация. Данный документ описывает: технологию работы системы, инструкцию

по её эксплуатации и применяемую бизнес-логику.

Для ответственных сотрудников, чья задача обслуживать систему, бы-

ла создана техническая блок-схема, которая показывает взаимосвязь объектов

системы. Наличие такого описания поможет новым сотрудникам, которые не

знакомы с архитектурой системы вникнуть в принцип её работы.
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ЗАКЛЮЧЕНИЕ

В настоящей работе был рассмотрен процесс разработки программного

обеспечения на примере автоматизированной модульной anifraud системы. Для

реализации поставленной задачи, потребовалось пройти несколько этапов. На-

чалом проекта, послужило формирование бизнес-требования заказчиком. На

первом этапе потребовалось провести анализ предметной области. Вторым

этапом стало написание технического задания. На заключительном этапе, пе-

ред началом разработки, потребовалось сконструировать архитектуру будущей

системы.

В ходе работы над проектом, помимо улучшения навыков применения

языка SQL, был получен опыт:

• Проектирование модульных систем;

• Сбор и формулирование требований;

• Формирование объектов базы данных;

• Применение принципов business intelligence;

• Автоматизация процесса;

• Оптимизация запросов к базе данных;

• Написание технической документации;

• Руководство реальным IT-проектом.

Подводя итоги, необходимо подчеркнуть, что данный проект реализу-

ет лишь часть мер по снижению финансовых рисков организации. Для более

эффективного подхода стоит применять комплекс различных мер по миними-

зации операционных рисков.
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