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ВВЕДЕНИЕ

Дифференциальное уравнение Лёвнера было открыто Чарльзом Лёвнером в
1923 году. С тех пор на протяжении многих лет дифференциальное уравнение
Левнера служило мощным средством изучения свойств однолистных функций в
единичном круге. Обнаруженные связи теории Левнера со многими разделами
математики объясняют растущий интерес к ней в современных исследованиях.
За это время появилось несколько видов этого уравнения, в частности: хордовое,
радиальное и другие.

Данная работа будет посвящена изучению хордового уравнения Лёвнера. В
первой главе приведены известные результаты в теории аналитических одно-
листных функций такие как: теорема площадей, теорема искажения и другие.
Также, здесь определены и описаны понятия ёмкости множества и ёмкости по-
луплоскости, на которые в последствии и опирается изучение главного объекта
работы.

Во второй главе речь идёт о хордовом уравнении Лёвнера и цепях Лёвнера.
Здесь будет выведено хордовое уравнение Лёвнера, приведены некоторые оцен-
ки. Приведён частный вид хордового уравнения Лёвнера. Также здесь опреде-
лено понятие цепи Лёвнера, приведены некоторые свойства и оценки, а также
некоторые примеры цепей Лёвнера.

В третьей главе по пунктам рассмотрены некоторые различные варианты
управляющих функций уравнения Лёвнера и описано поведение кривой особен-
ностей (или кривой сингулярности) в зависимости от типа управляющей функ-
ции.

В четвёртой главе приведена самостоятельная часть работы, которая за-
ключается в создании программы, которая решит хордовое дифференциальное
уравнение Лёвнера с заданными начальными условиями и управлением и визу-
ализирует его решение.
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1 Конформные отображения

1.1 Односвязные области

Область 𝐷 ⊂ C односвязна, если ̂︀C ∖ 𝐷 — связное подмножество сферы
Римана ̂︀C. Эквивалентно, 𝐷 односвязна если и только если область ограничена
простой замкнутой кривой 𝛾 : [𝑎, 𝑏] → 𝐷, содержащейся в 𝐷, то есть «число
кручения» при каждом 𝑧 ̸∈ 𝐷 𝛾 равно нулю. В частности, если 𝑓 голоморфная
функция в 𝐷 и 𝛾 — замкнутая 𝐶1 кривая в 𝐷, тогда∫︁

𝛾

𝑓(𝑧) 𝑑𝑧 = 0. (1.1)

Для любой 𝑓 и любой фиксированной 𝑧0 ∈ 𝐷 мы можем определить первооб-
разную

𝐹 (𝑧) =

∫︁
𝛾

𝑓(𝑧) 𝑑𝑧,

где интеграл по любой 𝐶1 кривой в 𝐷 от 𝑧0 до 𝑤; (1.1) показывает, что значение
не зависит от выбора 𝛾 и легко видно, что 𝐹 (𝑤) = 𝑓(𝑤).

Лемма 1.1. Если 𝐷 — односвязная область, и 𝑓 — голоморфная функция от
𝐷 до C ∖ {0}, тогда существует голоморфная функция 𝑔 на 𝐷 такая, что
𝑓 = 𝑒𝑔.

Лемма 1.2 (Гурвица). Предположим, что последовательность взаимно од-
нозначных аналитических функций в области 𝐷 сходится к аналитической
функции 𝑓. Тогда 𝑓 либо константа, либо взаимно однозначна.

Теорема 1.1 (Римана об отображении). Пусть 𝐷 — односвязная область, от-
личная от C, 𝑤 ∈ 𝐷. Тогда существует единственное отображение 𝑓 : 𝐷 → D
с 𝑓(𝑤) = 0, 𝑓 ′(𝑤) > 0.

Мы будем часто рассматривать инверсию функции, описанной выше, то есть
если 𝐷 — односвязная область и 𝑤 — указанная точка в 𝐷, то существует един-
ственное конформное отображение 𝑓 : D → 𝐷 с 𝑓(0) = 𝑤, 𝑓 ′(0) > 0.

Определение 1.1. Замкнутая кривая 𝛾 : [𝑎, 𝑏] → C называется кривой Жор-
дана, если она взаимно однозначна в [𝑎, 𝑏), то есть если 𝛾 — гомеоморфизм
(круга) [𝑎, 𝑏] с определёнными 𝑎 и 𝑏.
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Определение 1.2. Ограниченная область 𝐷 называется областью Жордана,
если 𝜕𝐷 — кривая Жордана.

Предложение 1.1. Пусть 𝐷 — замкнутая область с локально связной C∖𝐷.
Пусть конформное отображение 𝑓 : D → 𝐷 продолжается до непрерывного
отображения из D̄ в 𝐷̄. Тогда 𝐷 — область Жордана если и только если 𝑓
взаимно однозначна на 𝜕𝐷.

Предложение 1.2. Если 𝐷,𝐷′ — области Жордана и 𝑧1, 𝑧2, 𝑧3 и 𝑧′1, 𝑧
′
2, 𝑧

′
3 —

точки на 𝜕𝐷, 𝜕𝐷′, соответственно, ориентированные против часовой стрел-
ки, то существует единственное конформное отображение 𝑓 : 𝐷 → 𝐷′, ко-
торое может быть продолжено до гомеоморфизма из 𝐷̄ в 𝐷̄′ такое, что
𝑓(𝑧1) = 𝑧′1, 𝑓(𝑧2) = 𝑧′2, 𝑓(𝑧3) = 𝑧′3.

1.2 Однолистные функции

Определение 1.3. Функция 𝑓 : 𝐷 → C называется однолистной, если она
аналитична и взаимно однозначна в 𝐷.

Обозначим через 𝒜 множество односвязных областей 𝐷, отличных от C,
содержащих начало координат. Если 𝐴 ∈ 𝒜, пусть 𝑖𝑛𝑟𝑎𝑑(𝐴) — инрадиус (с
началом координат,) то есть 𝑖𝑛𝑟𝑎𝑑(𝐴) = 𝑑𝑖𝑠𝑡(0, 𝜕𝐴). Обозначим 𝑆* множество
однолистных функций 𝑓 в D с 𝑓(0) = 0 и 𝑓 ′(0) > 0. Теорема Римана об отоб-
ражении говорит, что взаимно однозначное соответствие между 𝑆* и 𝒜 даёт
𝑓 ↔ 𝑓(D). Другими словами, исследование односвязных областей сводится к
исследованию однолистных функций в D.

Обозначим 𝑆 множество функций 𝑓 ∈ 𝑆* с 𝑓 ′(0) = 1 и обозначим 𝒜1 соот-
ветствующее подмножество 𝒜. Любая 𝑓 ∈ 𝑆 имеет разложение в 0.

𝑓(𝑧) = 𝑧 +
∞∑︁
𝑛=2

𝑎𝑛𝑧
𝑛.

Компактный халл 𝐾 является компактным связным подмножеством C боль-
шим одной точки такой, что C ∖𝐾 связно. Для любого компактного халла су-
ществует единственное конформное отображение 𝐹𝐾 = C ∖ D̄ → C ∖ 𝐾 такое,

что lim
𝑧→∞

𝐹𝐾(𝑧)

𝑧
> 0. На самом деле, если 0 ∈ 𝐾, 𝐹𝐾(𝑧) =

1

𝑓𝐾

(︂
1

𝑧

)︂ , где 𝑓𝐾 —
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конформное отображение D (см. рисунок ??) с (логарифмической) ёмкостью

𝑐𝑎𝑝(𝐾) = 0, 𝑐𝑎𝑝(𝐾) = − log 𝑓 ′
𝐾(0) = log

[︂
lim
𝑧→∞

𝐹𝐾(𝑧)

𝑧

]︂
.

Пусть ℋ* — множество компактных халлов и пусть ℋ — множество ком-
пактных халлов, содержащих начало координат. Пусть ℋ*

0, ℋ0 — множества
халлов 𝐾 в ℋ*, ℋ, соответственно, с 𝑐𝑎𝑝(𝐾) = 0. Если 𝐾 ∈ ℋ*

0, тогда 𝐹𝐾 имеет
разложение Лорана

𝐹𝐾(𝑧) = 𝑧 + 𝑏0 +
∞∑︁
𝑛=1

𝑏𝑛
𝑧𝑛

.

Также, 𝑓𝐾 ∈ 𝑆 если и только если 𝐾 ∈ ℋ0.

Лемма 1.3. Если 𝑓 ∈ 𝑆, тогда существует нечётная функция ℎ ∈ 𝑆 такая,
что для каждого 𝑧 ∈ D, ℎ2(𝑧) = 𝑓(𝑧2).

Предложение 1.3. Для каждого 0 < 𝑟 < 1, существует 𝐶𝑟 < ∞ такая, что
если 𝑓 ∈ 𝑆 и |𝑧| < 𝑟, то |𝑓(𝑧) − 𝑧| 6 𝐶𝑟|𝑧|2. (Фактически оптимальная 𝐶𝑟 —

2 − 𝑟

(1 − 𝑟)2
).

1.3 Ёмкость

В предыдущем разделе мы определили ёмкость компактного халла 𝐾 через
𝐹𝐾(𝑧) ∼ 𝑒𝑐𝑎𝑝(𝐾)𝑧, 𝑧 → ∞, где 𝐹𝐾 — конформное отображение C ∖ D на D ∖ 𝐾

такое, что lim
𝑧→∞

𝐹𝐾(𝑧)

𝑧
> 0. Если 𝑤 ∈ C, 𝑎 > 0, то

𝐹𝐾+𝑤(𝑧) = 𝐹𝐾(𝑧) + 𝑤, 𝐹𝑎𝐾(𝑧) = 𝑎𝐹𝐾(𝑧),

и, следовательно, 𝑐𝑎𝑝(𝐾 + 𝑤) = 𝑐𝑎𝑝(𝐾), 𝑐𝑎𝑝(𝑎𝐾) = 𝑐𝑎𝑝(𝐴) + log 𝑎. Также
𝑐𝑎𝑝(D) = 0. Здесь мы обсудим некоторые свойства и эквивалентные опреде-

ления ёмкости. Пусть 𝑔𝐾 = 𝐹−1
𝐾 и, как прежде, пусть 𝑓𝐾(𝑧) =

1

𝐹𝐾

(︂
1

𝑧

)︂ , чтобы

𝑓 ′
𝐾(0) = 𝑒−𝑐𝑎𝑝(𝐾). В особенности, 𝑓𝐾 ∈ 𝑆 если только если 𝐾 ∈ ℋ0. Для любого

халла 𝐾, пусть 𝑟𝑎𝑑(𝐾) = sup{|𝑧| : 𝑧 ∈ 𝐾}, то есть 𝑟𝑎𝑑(𝐾) — радиус наимень-
шего круга с центром в начале координат, содержащего 𝐾.

Предложение 1.4. Если 𝐾1, 𝐾2 ∈ ℋ с 𝐾1 ⊂ 𝐾2, тогда 𝑐𝑎𝑝(𝐾1) 6 𝑐𝑎𝑝(𝐾2).
Неравенство строгое, если 𝐾1 = 𝐾2.
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Предложение 1.5. Если 𝐾 ∈ ℋ0, то 1 6 𝑟𝑎𝑑(𝐾) 6 4. Аналогично,
[−4, 0] ∈ ℋ0.

Если
𝑓𝐾(𝑧) = 𝑧 + 𝑎2𝑧

2 + 𝑎3𝑧
3 + . . . ,

и мы положим, что 𝑤 =
1

𝑧
, тогда

𝐹𝐾(𝑤) =
1

𝑓𝐾

(︂
1

𝑤

)︂ = 𝑤 + 𝑏0 + 𝑏1𝑤
−1 + . . . = 𝑤 − 𝑎2 + (𝑎22 − 𝑎3)𝑤

−1 + . . .

Особенно, если 𝐾 ∈ ℋ0, то |𝑏0| 6 2. Оценка в следующем предложении является
аналогичной оценкой.

Предложение 1.6. Существует 𝑐 < ∞ такое, что для всех 𝐾 ∈ ℋ0 и всех
|𝑧| > 1,

|𝐹𝐾(𝑧) − 𝑧| 6 𝑐.

Предложение 1.7. Существует 𝑐 < ∞ такая, что если 𝐾 ∈ ℋ и
|𝑧| > 4𝑒𝑐𝑎𝑝(𝐾), то

|Φ𝐾(𝑧) − log |𝑧| + 𝑐𝑎𝑝(𝐾)| 6 𝑐𝑒𝑐𝑎𝑝(𝐾)|𝑧|−1.

1.4 Ёмкость полуплоскости

Определение 1.4. Пусть H = {𝑥+ 𝑖𝑦 : 𝑦 > 0} — верхняя полуплоскость. Мы
будем называть ограниченное подмножество 𝐴 ⊂ H компактным H—халлом
если 𝐴 = H ∩ 𝐴 и H ∖ 𝐴 односвязно.

Обозначим через 𝒬 множество компактных H—халлов. Для каждого 𝐴 ∈ 𝒬
обозначим 𝐴* замыкание {𝑧 : 𝑧 ∈ 𝐴 или 𝑧 ∈ 𝐴}. Если 𝐴 связно, то 𝐴* ∈ ℋ*.

Предложение 1.8. Для каждого 𝐴 ∈ 𝒬 существует единственное конформ-
ное отображение 𝑔𝐴 : H ∖ 𝐴 → H такое, что

lim
𝑧→∞

[𝑔𝐴(𝑧) − 𝑧] = 0.[?]

Определение 1.5. Если 𝐴 ∈ 𝒬, то ёмкость полуплоскости (из бесконечно-
сти), ℎ𝑐𝑎𝑝(𝐴) определяется следующим образом:

ℎ𝑐𝑎𝑝(𝐴) = lim
𝑧→∞

𝑧[𝑔𝐴(𝑧) − 𝑧].
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Другими словами,

𝑔𝐴(𝑧) = 𝑧 +
ℎ𝑐𝑎𝑝(𝐴)

𝑧
+ 𝑂

(︂
1

|𝑧|2

)︂
, 𝑧 → ∞.

Если 𝑟 > 0, 𝑥 ∈ R и 𝐴 ∈ 𝒬, то легко проверить, что

𝑔𝑟𝐴(𝑧) = 𝑟𝑔𝐴

(︁𝑧
𝑟

)︁
, 𝑔𝐴+𝑥(𝑧) = 𝑔𝐴(𝑧 − 𝑥) + 𝑥;

Следовательно,

ℎ𝑐𝑎𝑝(𝑟𝐴) = 𝑟2ℎ𝑐𝑎𝑝(𝐴), ℎ𝑐𝑎𝑝(𝐴 + 𝑥) = ℎ𝑐𝑎𝑝(𝐴).
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2 Хордовое дифференциальное уравнение Лёвнера

2.1 Хордовое дифференциальное уравнение Лёвнера

В этом разделе мы покажем, что для каждой простой кривой 𝛾, начинаю-
щейся из начала координат и остающейся в верхней полуплосткости, возникает
непрерывная функция 𝑈𝑡 на действительной оси.

Предположим, что 𝛾 : [0,∞) → C — простая кривая с 𝛾(0) ∈ R и 𝛾(0,∞) ⊂
H. Пусть для каждого 𝑡 > 0 𝐻𝑡 = H ∖ 𝛾[0, 𝑡], которая является односвязной
подобластью в H. Пусть 𝑔𝑡 = 𝑔𝛾(0,𝑡] — единственное конформное отображение
из 𝐻𝑡 в H такое, что 𝑔𝑡(𝑧) − 𝑧 → 0 при 𝑧 → ∞ (См. рисунок 1)Тогда 𝑔𝑡 имеет
следующее разложение:

𝑔𝑡(𝑧) = 𝑧 +
𝑏(𝑡)

𝑧
+ 𝑂

(︂
1

|𝑧|2

)︂
, 𝑧 → ∞,

где 𝑏(𝑡) = ℎ𝑐𝑎𝑝 (𝛾(0, 𝑡]) . Пусть 𝑓𝑡 = 𝑔−1
𝑡 . Для каждого 𝑠 > 0 пусть 𝛾𝑠(𝑡) =

𝑔𝑠 (𝛾(𝑠 + 𝑡)) . Обратим внимание, что ℎ𝑐𝑎𝑝 (𝛾𝑠(0, 𝑡]) = 𝑏(𝑡+𝑠)−𝑏(𝑠) (см. (3.8) [?].)
Пусть 𝑔𝑠,𝑡 = 𝑔𝛾𝑠(0,𝑡−𝑠] такое, чтобы 𝑔𝑡 = 𝑔𝑠,𝑡 ∘ 𝑔𝑠.

Рисунок 1 — Отображение 𝑔𝑡

Лемма 2.1. Существует константа 𝑐 < ∞ такая, что если 𝛾 — кривая, как
сказано выше, и 0 6 𝑠 < 𝑡 6 𝑡0, тогда

𝑑𝑖𝑎𝑚 [𝑔𝑠(𝛾(𝑠, 𝑡])] 6 𝑐
√︀

𝑑𝑖𝑎𝑚 (𝛾[0, 𝑡0]) 𝑜𝑠𝑐(𝛾, 𝑡− 𝑠, 𝑡0),

||𝑔𝑠 − 𝑔𝑡||∞ 6 𝑐
√︀
𝑑𝑖𝑎𝑚 (𝛾[0, 𝑡0]) 𝑜𝑠𝑐(𝛾, 𝑡− 𝑠, 𝑡0),

где
𝑜𝑠𝑐(𝛾, 𝛿, 𝑡0) = sup {|𝛾(𝑠) − 𝛾(𝑡)| : 0 6 𝑠, 𝑡 6 𝑡0; |𝑡− 𝑠| 6 𝛿}

и 𝑔𝑠 − 𝑔𝑡 рассматривается как функция в 𝐻𝑡.
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Лемма 2.2. Если 𝛿 — кривая, как сказано выше, то для каждого 𝑡 существует
единственная функция 𝑈𝑡 ∈ R с 𝑔𝑡 (𝛾(𝑡)) = 𝑈𝑡, в смысле:

lim
𝑧→𝛾(𝑡)

𝑔𝑡(𝑧) = 𝑈𝑡, (2.1)

где предел берётся по 𝑧 ∈ H ∖ 𝛾[0, 𝑡]. Более того,

𝑈𝑡 = lim
𝑠→𝑡−

𝑔𝑠 (𝛾(𝑡)) , (2.2)

и 𝑡 ↦→ 𝑈𝑡 непрерывна.

Лемма 2.3. Предположим, что 𝑢 : [0, 𝑡0) → C — непрерывная функция такая,
что правая производная

𝑢′+(𝑡) = lim
𝜀→0+

𝑢(𝑡 + 𝜀) − 𝑢(𝑡)

𝜀

существует везде и 𝑢′+(𝑡) — непрерывная функция по 𝑡. Тогда 𝑢′(𝑡) = 𝑢′+(𝑡) для
всех 𝑡 ∈ (0, 𝑡0).

Предложение 2.1. Пусть 𝛾 — простая кривая, как описано выше, такая,
что 𝑏(𝑡) 𝐶1 и 𝑏(𝑡) → ∞ при 𝑡 → ∞. Тогда для 𝑧 ∈ H, 𝑔𝑡(𝑧) является решением
задачи Коши

𝑔̇𝑡(𝑧) =
𝑏̇(𝑡)

𝑔𝑡(𝑧) − 𝑈𝑡
, 𝑔0(𝑧) = 𝑧, (2.3)

где 𝑈𝑡 = 𝑔𝑡(𝛾(𝑡)). Если 𝑧 = 𝛾(𝑡0), то это справедливо для 𝑡 < 𝑡0 и

𝑈𝑡0 = lim
𝑡→𝑡0−

𝑔𝑡(𝑧).

Если 𝑧 ̸∈ 𝛾(0,∞), то равенство справедливо для всех 𝑡 > 0.

Мы начали с кривой 𝛾 и нашли функцию 𝑡 ↦→ 𝑈𝑡 на действительной оси.
Теперь мы пойдём в обратном направлении и немного обобщим.

Теорема 2.1. Пусть 𝜇𝑡, 𝑡 > 0 — однопараметрическое семейство неотрица-
тельных мер Бореля на R такое, что 𝑡 ↦→ 𝜇𝑡 непрерывна в слабой топологии,
и для каждого 𝑡 существует 𝑀𝑡 < ∞ такая, что sup {𝜇𝑠(R) : 0 6 𝑠 6 𝑡} < 𝑀𝑡

и supp𝜇𝑠 ⊂ [−𝑀𝑡,𝑀𝑡], 𝑠 6 𝑡. Для каждого 𝑧 ∈ H, пусть 𝑔𝑡(𝑧) — решение задачи
Коши

𝑔̇𝑡(𝑧) =

∫︁
R

𝜇𝑡(𝑑𝑢)

𝑔𝑡(𝑧) − 𝑢
, 𝑔0(𝑧) = 𝑧. (2.4)
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Пусть 𝑇𝑧 — супремум по всем 𝑡 таким, что решение существует до времени
𝑡 с 𝑔𝑡(𝑧) ∈ H. Пусть 𝐻𝑡 = {𝑧 : 𝑇𝑧 > 𝑡}. Тогда 𝑔𝑡 — единственное конформное
отображение 𝐻𝑡 в H такое, что 𝑔𝑡(𝑧) − 𝑧 → 0 при 𝑧 → ∞. Более того, 𝑔𝑡
имеет следующее разложение:

𝑔𝑡(𝑧) = 𝑧 +
𝑏(𝑡)

𝑧
+ 𝑂

(︂
1

|𝑧|2

)︂
, 𝑧 → ∞,

где

𝑏(𝑡) =

𝑡∫︁
0

𝜇𝑠(R) 𝑑𝑠.

Определение 2.1. Уравнение (2.4) называется хордовым (или полуплоскост-
ным) дифференциальным уравнением Лёвнера.

2.2 Цепи, генерируемые кривыми

Пусть 𝛾 : [0,∞) → H — кривая с 𝛾(0) ∈ R. В каждый момент времени 𝑡

пусть 𝐻𝑡 — неограниченный компонент H∖𝛾(0, 𝑡] и пусть 𝐾𝑡 = H∖𝐻𝑡. Заметим,
что 𝐻𝑡 — односвязная область и что 𝐾𝑡 (не обязательно строго) возрастающее
семейство халлов в 𝒬. Если 𝛾 — простая кривая с 𝛾(0,∞) ⊂ H, то 𝐾𝑡 = 𝛾(0, 𝑡] и
халлы строго расширяются. Если 𝛾 — не простая кривая или 𝛾(0,∞)∩R ̸= ∅, то
𝐾𝑡 может быть больше, чем

⋃︀
𝑠<𝑡

𝐾𝑠, например, если 𝛾(𝑡) = 𝑒𝑖𝜋𝑡, 0 6 𝑡 6 1, то 𝐾𝑠 —

круговая дуга для 𝑠 < 1, пока 𝐾1 — верхняя половина круга. Более того, если
мы положим 𝜕𝑡 = 𝜕𝐻 ∩H, то мы можем видеть, что 𝜕𝑡 содержится в замыкании⋃︀
𝑠<𝑡

𝐾𝑠. Чтобы увидеть это, обратим внимание, что если 𝐵(𝑧, 𝜀)
⋂︀ ⋃︀

𝑠<𝑡
𝐾𝑠 = ∅ и

lim
𝑠→𝑡−

[𝑔𝑡(𝑧)] = 0, то неравенство Ханрака подразумевает, что lim
𝑠→𝑡−

𝐼𝑚[𝑔𝑠(𝑤)] = 0

для всех 𝑤 ∈ 𝐵(𝑧, 𝜀), который, в свою очередь, подразумевает, что 𝐵(𝑧, 𝜀)∩𝐻𝑡 =
∅ и 𝐵(𝑧, 𝜀) ∩ 𝜕𝐻𝑡 = ∅.

Лемма 2.4. Если 𝑡 > 0 и 𝑧 — 𝑡-достижимая точка, то существует воз-
растающая последовательность 𝑠𝑗 ↑ 𝑡 и последовательность 𝑠𝑗-достижимых
точек 𝑧𝑗 с 𝑧𝑡 → 𝑧.

Предложение 2.2. Если 𝑡 > 0 и 𝑧 — 𝑡-достижимые точки, то существует
больше одной 𝑡-достижимой точки. Также 𝜕𝑡 заключена в замыкании мно-
жества 𝑠-достижимых точек для 𝑠 6 𝑡.
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Предложение 2.3. Пусть 𝑔𝑡 — цепь Лёвнера с управляющей функцией 𝑈𝑡 и
пусть 𝑓𝑡(𝑧) = 𝑔−1

𝑡 (𝑧), ̂︀𝑓𝑡(𝑧) = 𝑔−1
𝑡 (𝑧 +𝑈𝑡) и 𝑉 (𝑦, 𝑡) = ̂︀𝑓𝑡(𝑖𝑦). Предположим, что

для каждого 𝑡 предел
𝛾(𝑡) = lim

𝑦→0+

̂︀𝑓𝑡(𝑖𝑦) (2.5)

существует, и функция 𝑡 ↦→ 𝛾(𝑡) непрерывна, то есть пусть 𝑉 непрерывна
на [0,∞) × [0,∞). Тогда 𝑔𝑡 — цепь Лёвнера, сгенерированная кривой 𝛾.

Предложение 2.4. Пусть 𝑔𝑡 — цепь Лёвнера такая, что для каждого 𝑡 𝐾𝑡

локально связно. Тогда 𝑔𝑡 генерируется кривой.

Для оставшейся части раздела предположим 𝑔𝑡 — цепь Лёвнера с управля-
ющей функцией 𝑈𝑡, что генерируется по пути 𝛾. Как прежде, для 𝑠 < 𝑡 пусть
𝑔𝑠,𝑡 определена с помощью 𝑔𝑡 = 𝑔𝑠,𝑡 ∘ 𝑔𝑠. Тогда для фиксированного 𝑠 > 0 цепь
Лёвнера 𝑔

(𝑠)
𝑡 = 𝑔𝑠,𝑠+𝑡 имеет управляющую функцию 𝑈

(𝑠)
𝑡 = 𝑈𝑠+𝑡 и генерируется

по пути 𝛾(𝑠), где 𝛾(𝑠)(𝑡) = 𝑔𝑠(𝛾(𝑠 + 𝑡)).

Лемма 2.5. Пусть 𝑔𝑡 генерируется кривой 𝛾. Тогда 𝛾 — простая кривая с
𝛾(0,∞) ⊂ H если, и только если для всех 𝑠 > 0, 𝛾(𝑠)(0,∞) ∩ R = ∅.
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3 Некоторые примеры частных решений
дифференциального уравнения Лёвнера

3.1 Управляющая функция с квадратным корнем с
неограниченным временем

Теперь рассмотрим случай, когда управляющая функция зависит от времени
как функция квадратного корня. Рассмотрим функции вида:

𝑈𝑡 = 𝐶(1 − 𝑡)𝛽, 𝑈𝑡 = 𝐶𝑡𝛽, 𝛽 =
1

2
(3.1)

Этот случай подразделяется на два варианта. В первом варианте управляющая
функция имеет сингулярность при конечном значении времени и имеет место

𝑈𝑡 = 2[𝑘(1 − 𝑡)]
1
2 , 𝑡 6 1, 𝑘 > 0. (3.2)

Как будет показано далее, результат зависит от значения 𝑘. Например, далее
мы покажем, что в случае критического значения 𝑘 = 4 линия сингулярности
пересекает действительную ось. В другой ситуации, управляющая функция в
случае бесконечного времени подчиняется правилу

𝑈𝑡 = 2[𝑘𝑡]
1
2 , 𝑘 > 0. (3.3)

В этом случае 𝑧𝑐(𝑡) является просто прямой линией, что следует из условий
масштабирования.

Сначала найдём решение для случая (3.3), так как этот случай более триви-
ален. Введём новую переменную 𝐺 =

𝑔

𝑡
1
2

и зададим 𝜏 = ln 𝑡. Тогда 𝐺 удовлетво-
ряет:

𝑑𝐺

𝑑𝜏
= −𝐺

2
+

2

𝐺2𝑘
1
2

=
(𝐺− 𝑦+)(𝐺− 𝑦−)

2(2𝑘
1
2 −𝐺)

, (3.4)

где 𝑦± = 𝑘
1
2 ± (𝑘 + 4)

1
2 . Отсюда следует, что

𝑑𝐺

𝑑𝜏

[︂
𝑦−

𝐺− 𝑦+
− 𝑦+

𝐺− 𝑦−

]︂
=

1

2
(𝑦+ − 𝑦−). (3.5)

Если мы положим

𝐻(𝐺) :=
2𝑦+ ln(𝐺− 𝑦−) − 2𝑦− ln(𝐺− 𝑦+)

𝑦+ − 𝑦−
, (3.6)
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то
𝑑𝐻(𝐺)

𝑑𝜏
= −1, которая интегрируется:

−𝐻(𝐺) = 𝜏 + (𝑧) = ln 𝑡 + 𝑐(𝑧). (3.7)

Константа 𝑐(𝑧) может быть определена исходя из наблюдения, что предел при
𝑡 → 0, тогда

𝐻(𝐺) + ln 𝑡 =
2𝑦+ ln

(︁
𝑔 − 𝑦−𝑡

1
2

)︁
− 2𝑦− ln

(︁
𝑔 − 𝑦+𝑡

1
2

)︁
𝑦+ − 𝑦−

. (3.8)

Следовательно наше решение для (3.7) относительно 𝑡 становится простым

𝐻

(︂
𝑔

𝑡
1
2

)︂
= 2 ln

(︂
𝑧

𝑡
1
2

)︂
(3.9)

Так как линия сингулярности определяется условием, что 𝑔 эквивалентно управ-
ляющей функции, мы получаем

Рисунок 2 — Случай 𝑈𝑡 = 2
√
𝑡.

𝑧𝑐(𝑡) = 𝐵𝑡
1
2 , где 𝐵 = exp

[︂
1

2
𝐻
(︁

2𝑘
1
2

)︁]︂
. (3.10)

Более явно выражение для коэффициента 𝐵 выглядит так

𝐵 = 2

(︃
(𝑘 + 4)

1
2 + 𝑘

1
2

(𝑘 + 4)
1
2 − 𝑘

1
2

)︃ 1
2

𝑘
1
2

(𝑘+4)
1
2

exp

(︃
1

2
𝜋𝑖

(︃
1 − 𝑘

1
2

(𝑘 + 4)
1
2

)︃)︃
, (3.11)

откуда следует, что линия сингулярности находится под углом к действительной
оси со значением

𝜃 =
1

2
𝜋

(︃
1 − 𝑘

1
2

(𝑘 + 4)
1
2

)︃
. (3.12)

Для 𝑘 = 0 эта линия перпендикулярна вещественной оси, однако при 𝑘 → ∞
этот угол становится всё меньше и меньше.
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4 Научно-практическое исследование

Постановка задачи. Рассмотрим дифференциальное уравнение Лёвнера:

𝑑𝑔𝑡
𝑑𝑡

=
2

𝑔𝑡 − 𝑈𝑡
, 𝑔0 = 𝑧, 𝑧 ∈ H,

где H — верхняя полуплоскость. Известно, что если управляющая функция
𝑈𝑡 = 2

√
𝑡, то 𝑔𝑡 отображает верхнюю полуплоскость H с разрезом по прямоли-

нейному отрезку, исходящего из точки 0 под углом 𝜃 на верхнюю полуплоскость
H (см. рисунок 3).

θ

z ww=g (z)t

0 0

Рисунок 3 — Отображение верхней полуплоскости с прямолинейным разрезом
под углом 𝜃 на верхнюю полуплоскость.

0.6 0.8 1.0 1.2 1.4 1.6

0.1

0.2

0.3

0.4

0.5

0.6

Рисунок 4 — Набор интегральных кривых при каждом 𝑗 = 1, 2, ..., 𝑛, 𝑛 = 6,
полученный в результате работы программы.
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Нужно построить набор интегральных кривых дифференциального уравне-
ния Лёвнера.

Для решения данной задачи была написана программа в пакете Wolfram
Mathematica 11, позволяющая визуализировать решения хордового дифферен-
циального уравнения Лёвнера.

Итак, для каждого 𝑗, ..., 𝑛, 𝑛 = 6 мы получили интегральную кривую (𝑢(𝑡), 𝑣(𝑡)),
0 < 𝑡 6 𝑇𝑗, с начальным условием (𝑢(0), 𝑣(0)) = 𝑟 cos 𝜃, 𝑟 sin 𝜃, которая соединя-
ет точку 𝑢(0), 𝑣(0) и точку на вещественной оси (см. рисунок 4).
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ЗАКЛЮЧЕНИЕ

В данной работе мы изучили хордовое уравнение Лёвнера. Мы привели из-
вестные результаты в теории аналитических однолистных функций, определили
и описали понятия ёмкости множества и ёмкости полуплоскости, вывели хор-
довое уравнение Лёвнера, привели некоторые оценки, также привели частный
вид хордового уравнения Лёвнера. Определили понятие цепи Лёвнера, приве-
ли некоторые свойства и оценки, а также некоторые примеры цепей Лёвнера.
А также, были перечислены наиболее часто встречающиеся, а также наиболее
интересные примеры управляющих функций.

К самостоятельной части относится создание программы, позволяющей ви-
зуализировать решения уравнения Лёвнера с заданными начальными услови-
ями и управляющей функцией. Таким образом мы численно нашли решения
уравнения Лёвнера с заданными начальными условиями и управляющей функ-
цией.
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