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ВВЕДЕНИЕ

В связи с быстрым развитием мультимедийных технологий, количество

цифровых аудиозаписей, загруженных в Интернет, стремительно увеличивает-

ся. Поскольку доступность данных возрастает, необходимость классификации

аудио файлов для их эффективного использования крайне важна.

Музыкальный информационный поиск (Music Information Retrieval, MIR)

представляет собой одно из направлений исследования, позволяющих значи-

тельно улучшить взаимодействие с аудио данными. Классификация является

основополагающим инструментом для анализа и обработки музыкальной ин-

формации. Одним из примеров применения классификации музыки является

создание рекомендательных сервисов. Так, классификация музыкальных жан-

ров, заключающаяся в присвоении определенного жанра (классический, рок,

джаз и т. д.) неизвестному музыкальному произведению, является одной из

основных задач MIR [1]. Поскольку экспертное аннотирование заведомо до-

рого в использовании, а также трудоемко для больших каталогов, возможность

автоматической классификации востребована для сервисов потоковой переда-

чи звука. Методы машинного обучения оказались весьма успешными в сфере

анализа и обработки данных, извлечении тенденций и характерных особенно-

стей.

Целью дипломной работы является применение методов машинного обу-

чения в задаче музыкального анализа, а именно для классификации аудио

файлов по различным жанрам.

В ходе работы были поставлены следующие задачи:

— Изучить особенности обучения нейронных сетей при работе со звуком;

— Реализовать, обучить и провести сравнительный анализ различных мо-

делей и способов представления аудио файлов для решения задачи клас-

сификации (спектограммы, MFCC, т.д.);

— Реализовать веб-интерфейс для демонстрации работы нейронной сети,

показавшей наиболее высокую точностью на тестовых данных.

3



1 Обзор нейронных сетей

1.1 Сверточные нейронные сети

Сверточные нейронные сети (ConvNet, или CNNs) получили широкое

применение в области распознавания и классификации изображений [2]. Так,

каждое входное изображение представляется матрицей размерности (h,w, d),

где h и w обозначают высоту и ширину изображения в пикселях, а d— глубину

(количество цветовых каналов). Роль CNN состоит в том, чтобы преобразо-

вать изображения в форму, которую легче обрабатывать, сохранив при этом

признаки (функции), имеющие решающее значение для получения хорошего

прогноза [3].

1.1.1 Структура сверточной нейронной сети

Сверточный слой является основным строительным блоком CNN и вы-

полняет большую часть вычислительной работы. Параметры CONV слоя со-

стоят из набора обучаемых фильтров, каждый из которых имеет небольшую

размерность и простирается на всю глубину. Свертка представляет собой ма-

тематическую операцию, принимающую на вход два параметра, такие как

матрица изображения и фильтр или ядро. Так, во время прямого хода мы сво-

рачиваем ядро по ширине и высоте входной матрицы, вычисляя поточечные

произведения в соответствующих позициях фильтра и входного изображения.

В результате данной операции мы получаем двухмерную матрицу активации.

Таким образом, свертка позволяет изучить особенности изображения, сохра-

няя при этом связь между пикселями. Скалярный результат каждой свертки

поступает на вход функции активации, представляющей собой некую нели-

нейную функцию, определяющую выходное значение нейрона в зависимости

от результата взвешенной суммы входов и порогового значения. Распростра-

ненными функциями активации являются логистическая (sigmoid), гипербо-

лический тангенс, ReLU, Leaky ReLU, Softmax.

Подобно сверточному слою, субдискритизирующий слой (Pooling) от-

вечает за постепенное уменьшение размерности изображения, что в свою

очередь позволяет сократить вычислительную мощность, необходимую для

обработки данных. Так, поступившая на вход матрица делится на блоки, для

каждого из которых вычисляется некоторая функция. Чаще всего используется

функция максимума или среднего. Совокупность сверточного и субдискрити-
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зирующего слоев образует i-й слой сверточной нейронной сети.

Полносвязные слои являются важными компонентами сверточных ней-

ронных сетей. В данном слое каждый нейрон соединен со всеми нейронами на

предыдущем уровне, причем каждая связь имеет свой весовой коэффициент.

Добавление полносвязного слоя представляет собой способ изучения нелиней-

ных комбинаций высокоуровневых характеристик, представленных выходны-

ми данными сверточного слоя.

Для решения проблемы переобучения, используются слои регуляризации

(Dropout), основная идея которых состоит том, что каждый нейрон исключа-

ется с некоторой вероятностью p, в результате чего происходит изменение

структуры сети.

1.2 Рекуррентные нейронные сети

Рекуррентные нейронные сети (RNN ) представляют собой тип искус-

ственных нейронных сетей, предназначенных для распознавания паттеров в

последовательностях данных. Зачастую RNN применяются при решение та-

ких задач, как распознавание рукописного текста, распознавание речи, языко-

вое моделирование, перевод и т.д. Отличительной же особенностью RNN от

других нейронных сетей является то, что они имеют временное измерение,

а также обладают внутренней памятью, которая используется для обработки

последовательностей произвольной длины [4], [5].

Каждое скрытое состояние содержит значения не только предыдущего

скрытого состояния, но также и всех тех, которые предшествовали ht−1 до тех

пор, пока сохраняется память. Однако, зачастую разрыв между соответствую-

щей информацией и точкой, где она необходима, становится очень большим и

по мере того, как этот разрыв увеличивается, RNN становятся неспособными

научиться соединять информацию.

1.3 Сети с долгой кратковременной памятью

Сети с долгой кратковременной памятью, обычно называемые LSTM

(от англ. Long Short Term Memory), представляют собой особый тип реку-

рентных нейронных сетей, разработанных с целью предотвращения проблемы

долгосрочной зависимости. В настоящее время данные сети получили широкое

распространение, отлично проявив себя при решение большого разнообразия

задач.
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Все рекуррентные нейронные сети имеют форму цепочки повторяющих-

ся модулей. В стандартных RNN этот повторяющийся модуль имеет довольно

простую структуру, например, один слой с функцией активации tanh. LSTM

сети также имеют цепочечную структуру, однако структура самого повторяю-

щегося модуля отличается.

Ключевой особенностью LSTM является такой компонент, как состоя-

ние ячейки (cell state), напоминающий конвейерную ленту, проходящую по

всей цепочке, принимая участие при этом лишь в небольшом количестве

линейных преобразований. Информация может храниться, записываться или

считываться из ячейки, как данные в памяти компьютера. Данный процесс

тщательным образом регулируется специальными структурами, называемы-

ми фильтрами (gate), которые состоят из слоя сигмоидальной нейронной сети

и операции поточечного умножения, и определяют, пропустить информацию

или нет.

Первым шагом в LSTM является решение о том, какую информацию

необходимо удалить из состояния ячейки, которое принимается сигмоидаль-

ным слоем, так называемым «слоем фильтра забывания» (ft).

На следующем шаге определяется, какая новая информацию будет сохра-

нена в состоянии ячейки. Данный процесс состоит из двух частей. Во-первых,

сигмоидальный слой решает, какие значения необходимо обновить (it). Затем

tanh-слой создает вектор новых значений-кандидатов Ĉt, которые необходимо

добавить в состояние.

Теперь, когда определены значения ft, it и Ĉt, необходимо обновить

состояние ячейки Ct−1, полученное на предыдущем шаге, на новое Ct. Так,

мы умножаем старое состояние на ft, тем самым «забывая» то, что было

решено забыть ранее, и добавляем it ∗ Ĉt (новая информация).

На заключительном шаге в результате применения нескольких фильтров

к состояниям ячейки определяется выходная информация. Так, сначала приме-

няется сигмоидальный слой, решающий, какую именно информацию из состо-

яния ячейки нужно выводить. Затем значения приводятся к диапазону [-1, 1],

после чего перемножаются со значениями сигмоидального слоя, в результате

чего на выходе мы получаем только необходимую информацию.
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2 Обработка звуковых сигналов

Звук представляется в форме аудиосигнала, имеющего такие парамет-

ры, как частота, ширина пропускания, децибел и т. д. Типичный аудиосигнал

может быть выражен как функция от амплитуды и времени.

Амплитуда волны в определенном временном интервале называется сем-

плом. Семплинг же представляет собой преобразование непрерывного сигнала

в серию дискретных значений. Частотой дискретизации называется коли-

чество семплов за определенный фиксированный промежуток времени. Так,

высокая частота дискретизации приводит к меньшей потере информации, но

к большим вычислительным затратам, в то время, как при низких частотах

дискретизации происходит большее искажение информации.

Преобразование Фурье играет важную роль при обработке аудио сигна-

лов, позволяя разложить функцию времени (сигнал) на составляющие часто-

ты. На практике при работе с аудио сигналами наиболее часто применяется

оконное преобразования Фурье, включающее в себя разбиение аудиосигнала

на кадры с последующим вычислением преобразования Фурье для каждого

кадра.

Наиболее известными форматами представления аудио сигналов при

решении задач машинного обучения являются мел-спектограммы и мел-кеп-

стральные коэффициенты. Мел представляет собой единицу измерения высоты

тона, в основе которой лежит психо-физиологические особенности восприятия

звука человеком. Мел-спектрограммой называется спектрограмма, в которой

частота выражена не в Гц, а в мелах. Для перехода к мелам к исходной спек-

трограмме применяются мел-фильтры, представляющие собой треугольные

функции, равномерно распределенные на мел-шкале.
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3 Практическая часть

3.1 Постановка задачи

Классификация музыкальных жанров — одна из областей музыкального

информационного поиска (MIR), популярность которой возрастает. Тем не

менее, данная задача затруднена рядом факторов, среди которых отсутствие

четкого и формального определения понятия жанр. Также границы между

жанрами все еще остаются размытыми, что делает проблему распознавания

музыкальных жанров ( MGR) нетривиальной задачей.

Целью данной работы является изучение новых методов, тенденций в

машинном обучении, применяемым к проблеме музыкальной аннотации, а

также проведение эксперимента по классификации жанров музыки, позволяю-

щего выполнить сравнительный анализ различных подходов, а также моделей

машинного обучения в контексте поставленной задачи.

3.2 Описание технологий

Для решения поставленной задачи был выбран язык программирования

Python [6], а также следующие технологии:

— NumPy — библиотека с открытым исходным кодом для языка програм-

мирования Python, обладающая такими возможностями, как поддержка

многомерных массивов (включая матрицы), а также поддержка высо-

коуровневых математических функций, предназначенных для работы с

многомерными массивами;

— Keras— открытая библиотека, написанная на языке Python, представля-

ющая собой надстройку над фреймворками Deeplearning4j, TensorFlow

и Theano, и нацеленная на оперативную работу с сетями глубинного

обучения [7];

— Librosa— это пакет Python для анализа музыки и аудио, предоставляю-

щий строительные блоки, необходимые для создания музыкальных ин-

формационно-поисковых систем [8].

Для обучения моделей был использован GoogleColab— облачный сервис

на основе Jupyter Notebook.

3.3 Подготовка данных

В качестве обучающего набора данных был выбран датасет GTZAN [9],

содержащий одну тысячу музыкальных фрагментов продолжительностью по
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тридцать секунд с частотой 22050 Гц, сгруппированных по десяти различным

жанрам: Блюз, Классика, Кантри, Диско, Хип-Хоп, Джаз, Метал, Популярная

музыка, Регги, Рок.

Для решения проблемы недостатка данных была применена аугмента-

ция, в результате которой каждая аудио запись была разбита на десять треков

по три секунды каждый, что позволило увеличить количество обучающей вы-

борки в десять раз, и как следствие, значительно повысить точность моделей.

Также на данном этапе было реализовано преобразование данных .au

формата в формат, подходящий для машинного обучения. В качестве призна-

ков было решено использовать мел-спектограммы и мел-кепстральные коэф-

фициенты. Преобразование аудио файла непосредственно в мел-спектограм-

му, а также извлечение мел-кепстральных коэффициентов было реализовано

средствами библиотеки Librosa. Мел-спектрограммы и диаграммы MFCC,

построенные для различных жанров, имеют существенные различия, что поз-

воляет использовать сверточные нейронные сети для классификации [9].

Наиболее важными параметрами, используемыми в преобразовании, яв-

ляются — длина окна, которая указывает окно времени для выполнения пре-

образования Фурье, и переменная сдвига (hoplength), представляющая собой

число значений (семплов) между последовательными фрагментами. В пред-

ставленной работе для данных параметров были выбраны значения 2048 и 512

соответственно, количество мел-фильтров составило 128.

Поскольку решение данной задачи относится к типу задач контролируе-

мого обучения, на этапе подготовки данных каждому вектору признаков были

сопоставлены соответствующие метки, представляющие собой названия жан-

ров. Затем получившаяся структура была записана на диск для последующего

использования.

3.4 Описание моделей

Сверточные нейронные сети показывают отличные результаты в широ-

ком спектре задач, среди которых компьютерное зрение, распознавание речи и

обработка естественного языка [10]. Рекуррентные нейронные сети, среди ко-

торых наиболее известны сети с долгой кратковременной памятью (LSTM ),

также широко распространены и успешно используются в ряде задач, для

которых необходим захват долгосрочных зависимостей. В данной работе при-

меняются различные варианты CNN , RNN моделей для прогнозирования
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музыкального жанра, описание которых представлена далее.

3.4.1 Модель CNN-1D

Использование одномерных сверточных нейронных сетей при работе

с аудио данными обосновано тем, что мы можем представлять звук в виде

данных временного ряда. Модель, представленная в данной главе, состоит

двух 1d Conv слоев с количеством фильтров 256, 128 соответственно; ши-

рина ядра в обоих случаях равна трем. Между данными слоями выполняется

MaxPooling c фактором 2. После второго слоя свертки для создания репрезен-

тативного вектора следует GlobalMaxPooling, который используется в пол-

носвязном слое с 512 фильтрами. После каждого сверточного слоя следует

слой BatchNormalization, позволяющий значительно ускорить процесс обу-

чения [11]. Для стабилизации обучения и избежания проблемы переобучения

применяются такие методы, как L2-регуляризация (называемая также сокраще-

нием весов) с коэффициентом регуляризации λ, равным 0.001, а такжеDropout

с параметром 0.5. Для всех моделей используется функция активации ReLU

на скрытом слое и Softmax на выходном слое. Модель обучалась в тече-

нии пятидесяти эпох с использованием оптимизатора Адама с коэффициентом

обучения 0.0001.

Точность данной модели на тестовых данных при классификации по

десяти различным жанрам составила ∼ 90.5%.

3.4.2 Модель CNN-2D

Основным отличием данной модель от предыдущей является то, что

здесь применяются 2D Conv слои. Так, была добавлена третья размерность —

один цветовой канал, что позволило работать с мел-спектрограммами и с диа-

граммами MFCC, как с черно-белыми изображениями. Представленная модель

состоит из трех Conv2D слоев с количеством фильтров 128, 64, 64 соответ-

ственно. Для первого и второго слоя применяются фильтры размерностью

(3, 3), а для третьего — (2, 2). Аналогично первой модели в качестве субдискре-

тизирующего слоя здесь используетсяMaxPooling2D. Полносвязный слой со-

держит 128 фильтров. Также используется L2-регуляция,BatchNormalization

и Dropout с параметром 0.4.

Точность модели в этом случае составила ∼ 77.8%, что существенно

уступает одномерной CNN модели.
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3.4.3 LSTM модель

Модель, представленная в данной главе, содержит два LSTM слоя, со-

держащих 128, 64 единиц памяти. После второго LSTM -слоя следует полно-

связныйDense слой с 64 нейронами, применяется функция активацииReLU , а

на выходном слое используется функция активации Softmax, число нейронов

равно десяти по количеству классов.

Точность модели после 50 эпох обучения составила ∼ 72%.

3.4.4 CRNN модель

В предыдущих секциях были рассмотрены CNN , RNN модели. Так, ис-

пользование сверточной нейронной сети при решении задачи классификации

музыкальных жанров, обосновано тем, что спектрограммы, представляющие

собой визуальное представление звука по частоте и времени, подобны изобра-

жениям, у каждого из которых есть свои отличительные признаки. RNN же в

свою очередь лучше понимают последовательные данные, поскольку скрытое

состояние в момент времени t зависит от скрытого состояния, полученного на

предыдущем шаге.

Сверточная рекуррентная модель, представленная в данной главе, вклю-

чает в себя Conv1D слои, выполняющие операции свертки только по оси

времени. Каждый слой 1d свертки извлекает признаки из небольшого фрагмен-

та спектограммы. После операции свертки применяется BatchNormalization

и функция активации ReLU . Затем выполняется MaxPooling1D, уменьша-

ющий пространственные размеры изображения. Данная цепочка операций —

Conv1D —BatchNormalization—ReLU —MaxPooling1D выполняется три

раза. Затем, вывод одномерного сверточного слоя подается на вход LSTM ,

которая использует 128 скрытых нейронов. Далее следует полносвязный слой

с 64 нейронами. И, наконец, итоговый выходной слой модели представляет со-

бой полносвязный слой с функцией активации Softmax и 10 нейронами для

присвоения вероятности 10 классам. Также для предотвращения проблемы

переобучения между всеми слоями используется L2-регуляризация.

Точность модели составила ∼ 88% на тестовых данных, что превосходит

как CNN -2D модель, так и LSTM модель, однако проигрывает CNN -1D

модели c одномерной сверткой.
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Таблица 1 – Сравнение точности классификации (%) для набора данных GTZAN по рас-
смотренным методам (лучший результат выделен жирным шрифтом).

Название модели мел-спектограммы MFCC
CNN-1D 78.9% 90.5%
CNN-2D 73% 77.8%
LSTM 47.62 72.2%
CRNN 78.1% 87.9%

Parallel CNN RNN 64.6% 83%

3.4.5 Параллельная CNN-RNN модель

Данная модель имеет параллельную структуру, состоящую из сверточной

и рекуррентной нейронных сетей. Так, сверточная сеть состоит из цепочки опе-

раций —Conv1D —BatchNormalization—ReLU —MaxPooling1D, использу-

емой также в CRNN , которая повторяется дважды, а рекуррентная нейронная

сеть представлена GRU . Ключевая идея подхода заключается в том, что, хотя

сверточная нейронная сеть и содержит RNN слой, он может извлекать вре-

менную информацию только из выходных данных CNN , однако временные

отношения оригинальных музыкальных сигналов не сохраняются при выпол-

нении операций со сверточными нейронными сетями.

Модель, описанная в этой секции, передает спектограмму (диаграмму

MFCC) через слои CNN и RNN параллельно, объединяя данные, получив-

шиеся на выходе, и затем отправляя их через полносвязный слой с функцией

активацией Softmax.

Валидационная точность представленной модели на тестовых данных

составила ∼ 83%.

3.5 Результаты эксперимента

В ходе эксперимента были спроектированы и обучены различные виды

моделей нейронных сетей, предназначенные для решения задачи классифика-

ции музыкальных жанров. Результаты эксперимента представлены в таблице 1,

где строки соответствуют конкретным моделям, определенным в предыдущей

части, столбцы — методам обработки данных (в данном случае мел-спекто-

граммы, мел-кепстральные коэффициенты). На пересечении располагаются

значения точности классификации (%) для набора данных GTZAN .
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Так, было получено, что применение мел-кепстральных коэффициентов

показывает себя намного лучше по сравнению с мел-спектограммами. Так-

же было выявлено, что точность классификации достигает более высоких

значений при использование менее глубоких нейронных сетей (одномерные

сверточные сети в данном эксперименте).

3.6 Описание веб-приложения

Для демонстрации работы нейронной сети, показавшей наилучшие ре-

зультаты при решении задачи классификации музыкальных жанров, было ре-

ализовано веб-приложение.

Для написания клиентской части были использованы HTML, CSS,

JQuery, Bootstrap, JavaScript; для серверной части был выбран Flask —

легковесный фреймворк для создания веб-приложений на языке программиро-

вания Python. В качестве среды программирования был выбран IDE PyCharm.

При переходе на главную страницу приложения, сервер возвращает шаб-

лон templates/index.html. На странице загрузки пользователю предостав-

ляется возможность выбрать аудио файл, для которого требуется определить

жанр. Нажатие на изображение аудио файла сопровождается открытием фай-

лового диалога. После загрузки песни необходимо нажать на кнопку «Пред-

сказать жанр», в результате чего загруженный аудио файл будет отправлен на

сервер POST запросом по адресу /predict. В случае успешного ответа серве-

ра проигрывание загруженной музыкальной композиции приостановится, а на

экран будет выведена диаграмма жанров, а также предсказанный результат.

Взаимодействие работы приложения с нейронной сетью на сервере осу-

ществляется через сервис _Genre_Prediction_Service. Так, получив POST

запрос, сервер инициирует функцию predict данного сервиса и возвращает

клиенту полученный ответ в формате json.

Непосредственная логика по работе с моделью реализована в классе

_Genre_Prediction_Service. С помощью функции extract_feature мы по-

лучаем сигнал, который затем разбивается на сегменты, для каждого из кото-

рых извлекается набор MFCC. Затем по суммарным значениям вероятностей

принадлежности каждого сегмента тому или иному жанру определяется фи-

нальный рейтинг для всей композиции.
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3.7 Тестирование модели

Для определения жанра, на котором модель работает наиболее точно,

было проведено тестирование модели с помощью 100 музыкальных произве-

дений из онлайн библиотеки Jamendo Licensing, где для каждого жанра было

выбрано по десять композиций. Так, нейронная сеть предсказала верно все

аудио файлы для следующих жанров: Классика, Блюз, Джаз, Диско. Наи-

меньшая доля верных результатов была получена для музыкального жанра

Рок (50%), который нейронная сеть зачастую определяла к категории Метал,

представляющей собой разновидность рок-музыки, что подтверждает нетри-

виальность данной задачи ввиду смешения стилей.
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ЗАКЛЮЧЕНИЕ

В ходе дипломной работы для решения задачи классификации аудио фай-

лов по десяти различным жанрам: Блюз, Классика, Кантри, Диско, Хип-Хоп,

Джаз, Метал, Популярная музыка, Регги, Рок были спроектированы следую-

щие типы нейронных сетей: CNN-1D, CNN-2D, LSTM, CRNN, Parallel CNN-

RNN. Сложность данной темы обусловлена тем, что зачастую музыкальным

произведениям присущи черты сразу нескольких жанров, более того не суще-

ствует достаточно четкого определения данного понятия.

Обучение моделей проводилось с помощью мел-спектограмм, а также

мел-кепстральных коэффициентов, которые наиболее часто применяются при

решении подобных задач. Длительность обучения каждой модели составила

пятьдесят эпох. В ходе эксперимента было получено, что точность моделей

при использовании MFCC значительно превышает результаты, полученные с

применением мел-спектограмм. Более того, сравнительный анализ показал,

что обучение менее глубоких сетей в контексте данной задачи при неболь-

шом объеме обучающей выборки (1000 файлов по 30 секунд) проходит более

эффективно. Так, наиболее высокий результат был показан моделью CNN-1D,

состоящей из двух сверточных Conv1D слоев, а также двух полносвязных

слоев, и составил ∼ 90% на тестовой выборке. Для демонстрации работы дан-

ной модели был реализован веб-интерфейс, для серверной части которого был

использован фреймворк Flask.

15



СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1 M. Schedl, E. G. Music information retrieval: Recent developments and appli-

cations. / E. G. M. Schedl, J. Urbano. — 2014. — Pp. 127–261. — URL: http:

//www.deeplearningbook.org. (Дата обращения 01.05.2020).

2 Goodfellow Ian, B. Y. Deep learning. / B. Y. Goodfellow, Ian, A. Courvil-

le. — 2016. — URL: http://www.deeplearningbook.org. (Дата обращения

01.05.2020).

3 Shujian Yu Student Member, I. K. W. R. J. M. I. Understanding convolutional

neural networks with information theory: An initial exploration / I. K. W. R. J.

M. I. Shujian Yu, Student Member, L. F. Jose C. Principe // arXiv:1804.06537v5

[cs.LG]. — 2020. — URL: https://arxiv.org/pdf/1207.0580.pdf. (Дата

обращения 18.04.2020).

4 Сергей Николенко А. Кадурин, Е. А. Глубокое обучение. Погружение в мир

нейронных сетей / Е. А. Сергей Николенко, А. Кадурин. — Питер СПб,

2018.

5 Саймон, Х. Нейронные сети. Полный курс / Х. Саймон. — Вильямс, 2019.

6 Python Documentation [Электронный ресурс]. — URL: https://docs.

python.org/3/ (Дата обращения 01.05.2020).

7 Keras Documentation [Электронный ресурс]. — URL: https://keras.io/

documentation/ (Дата обращения 01.05.2020).

8 LibrosaDocumentation [Электронный ресурс]. — URL: https://librosa.

github.io/librosa/ (Дата обращения 01.05.2020).

9 Tzanetakis, G. Musical genre classification of audio signals / G. Tzanetakis,

P. Cook // IEEE Transactions on speech and audio processing. — 2002. —

Vol. 10.

10 Kim, Y. Convolutional neural networks for sentence classification / Y. Kim //

IEEE Transactions on speech and audio processing. — 2014.

11 Ioffe, S. Batch normalization: Accelerating deep network training by reducing

internal covariate shift. / S. Ioffe, C. Szegedy. — 2015.

16

http://www.deeplearningbook.org.
http://www.deeplearningbook.org.
http://www.deeplearningbook.org.
https://arxiv.org/pdf/1207.0580.pdf.
https://docs.python.org/3/
https://docs.python.org/3/
https://keras.io/documentation/
https://keras.io/documentation/
https://librosa.github.io/librosa/
https://librosa.github.io/librosa/

	ВВЕДЕНИЕ
	Обзор нейронных сетей
	Сверточные нейронные сети
	Структура сверточной нейронной сети

	Рекуррентные нейронные сети
	Сети с долгой кратковременной памятью

	Обработка звуковых сигналов
	Практическая часть
	Постановка задачи
	Описание технологий
	Подготовка данных
	Описание моделей
	Модель CNN-1D
	Модель CNN-2D
	LSTM модель
	CRNN модель
	Параллельная CNN-RNN модель

	Результаты эксперимента
	Описание веб-приложения
	Тестирование модели

	ЗАКЛЮЧЕНИЕ
	СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

