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ВВЕДЕНИЕ

Применение генеративных состязательных сетей может быть полезно

для систем распознавания речи, требующих больших объемов информации, за

счет увеличения объема данных. Также синтезирование аудио, генерирование

звуковых эффектов может иметь практическое применение в звуковом дизайне

для музыки и кино. Однако, несмотря на то, что применение генеративных со-

стязательных сетей для задач синтеза и стилизации изображений набирает все

большую популярность, использование сетей данной архитектуры для зада-

чи синтезирования звука в условиях обучения без учителя еще не до конца

изучено.

Аудиосигналы дискретизируются с высоким разрешением, для обучения

синтезированию звука требуется захват структуры сигнала в различных вре-

менных масштабах. Применение оконного преобразования Фурье позволяет

получить графическое представление аудио сигнала, спектограмму, благодаря

чему мы можем работать с аудио файлами, как с изображениями [1].

Однако в генеративном контексте такой подход может быть достаточно

проблематичен, так как спектрограммы являются в некотором роде необрати-

мыми и, следовательно, не могут быть прослушаны без оценки потерь.

Целью данной работы является создание и обучение генеративной состя-

зательной сети, нацеленной на трансформацию жанра заданного аудио файла,

рассматриваемого в виде спектограммы.

Поставлены следующие задачи:

— изучение принципов работы и разновидностей генеративных состяза-

тельных сетей;

— анализ существующих алгоритмов преобразования звуковых сигналов;

— создание и обучение генеративной состязательной сети, нацеленной на

трансформацию стиля аудио файла;

— создание программного обеспечения, предоставляющего интерфейс для

обученной генеративной нейронной сети.
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1 Нейронные сети для задачи трансформации стиля

Глубокие генеративные модели в виду сложностей аппроксимации, труд-

но разрешимых вероятностных вычислений, возникающих при оценке функ-

ции максимального правдоподобия, до недавнего времени оставались менее

изученными, чем дискриминационные модели, нацеленные на сопоставление

многомерных входных данных с метками определенных классов.

В 2014-ом году была предложена архитектура генеративной сети, кото-

рая носит название генеративная состязательная сеть [2]. Данная модель

состоит из двух противоборствующих сетей — генеративной модели (генера-

тор) и дискриминационной модели (дискриминатор). Задача дискриминатора

заключается в определении того, является ли данная выборка выборкой из рас-

пределения модели или выборкой из распределения данных. Задача генерато-

ра — генерация таких данных, которые бы рассматривались дискриминатором,

как истинные (выборкой из распределения данных).

В обучении данных моделей конкуренция между дискриминатором и

генератором играет значительную роль. Так, переобучение дискриминатора,

т. е. безошибочное распознавание моделью сгенерированных образцов приво-

дит к прекращению обучения генератора, т. к. генеративная сеть не получает

информации по поводу того, как минимизировать ошибку, что впоследствии

приводит к прекращению обучения дискриминатора.

Генеративные состязательные сети имеют свои преимущества и недо-

статки по сравнению с предшествующими моделями. Недостатки в первую

очередь заключаются в том, что отсутствует явное представление генерирую-

щей функции, также необходимо синхронизировать обучение дискриминатора

и генератора (в частности, для генерации разнообразных результатов и избе-

жания «сценария Гельветики», при котором генератор отображает различные

входные данные z в одно и то же значение x, не следует тренировать генератор

слишком долго без обновления дискриминатора).

Преимущество генеративных состязательных сетей носит в основном

вычислительный характер. Также состязательные модели могут получить неко-

торое статистическое преимущество, так как сеть генератора не обновляется

непосредственно с примерами данных, а только с градиентами, проходящи-

ми через дискриминатор. Это означает, что компоненты входных данных не

копируются непосредственно в параметры генератора.
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1.1 CycleGAN

В 2017-ом году учеными Исследовательской лаборатории ИИ Беркли

(BAIR) была предложена измененная версия генеративной состязательной се-

ти — циклическая генеративная состязательная сеть [3].

Оптимальный генератор G отображает область X в область Ŷ , распре-

деленную идентично целевой области Y . Тем не менее, данное отображение

не гарантирует того, что отдельные входы x и выходы y будут объединены в

пару. Также, существует бесконечное множество отображений G, задающих

одинаковое распределение по ŷ.

Оптимизация состязательной потери в условиях изоляции сетей друг

от друга затруднительна: стандартные процедуры на практике зачастую при-

водят к известной проблеме mode collapse, когда все входные изображения

преобразуются в одни и те же выходные изображения, и оптимизация не про-

грессирует.

Объединение потери согласованности цикла, поощряющей F (G(x)) ≈ x

и G(F (y)) ≈ y, с состязательными потерями на доменах X и Y формирует

конечную цель для непарного преобразования изображения в изображение.

Так, пусть X , Y — непарные домены, {xi}Ni=1, xi ∈ X , {yi}Ni=1, yi ∈ Y —

тренировочные данные, x ∼ pdata(x), y ∼ pdata(y)— распределения данных.

Предложенная модель включает два отображения G : X → Y и F : Y →
X , также определены дискриминаторы DX и DY , где целью дискриминато-

ра DX является обучение распознаванию различий между изображениями

домена X {xi} и отображенными изображениями {F (yi)}, аналогично дис-

криминатор DY нацелен на распознавание {yi} и {F (xi)}.
Цель исследователей заключалась в оптимизации состязательных потерь

для сопоставления распределения сгенерированных изображений с распре-

делением данных из целевого домена и потери согласованности цикла для

предотвращения противоречивости отображений G и F в процессе обучения.

Так, для отображенияG : X → Y и дискриминатораDY была определена

следующая функция потери:

LGAN(G,DY , X, Y ) = Ey∼pdata(y)
[
logDY (y)

]
+ Ex∼pdata(x)

[
log(1−DY (G(x)))

]
.

Целью генератора G является минимизация данного выражения, в то
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время как, цель дискриминатора DY состоит в его максимизации, т. е. цель

обучения может быть описана в виде следующего выражения:

min
G

max
DY

LGAN(G,DY , X, Y ).

Аналогичным образом определяется состязательная потеря для отобра-

жения F : Y → X и дискриминатора DX , т. е. minF maxDX
LGAN(F,DX , Y,X).

Состязательные потери, изолированные при обучении отображений друг

от друга, не могут гарантировать того, что обученная функция сможет отобра-

зить индивидуальный вход xi в желаемый выход yi. С целью сокращения про-

странства возможных функций отображения, была предложена потеря согла-

сованности цикла: для каждого изображения x цикл преобразований должен

быть способен вернуть изображение к его первоначальному представлению,

т.е. x → G(x) → F (G(x)) ≈ x. Данное условие носит название согласован-

ность прямого цикла. Аналогично для каждого изображения y ∈ Y отображе-

ния G и F должны удовлетворять условию согласованности обратного цикла

y → F (y) → G(F (y)) ≈ y. Данное поведение стимулируется с помощью

потери согласованности цикла:

Lcyc(G,F ) = Ex∼pdata(x)
[
‖F (G(x))− x‖1

]
+ Ey∼pdata(y)

[
‖G(F (y))− y‖1

]
.

Таким образом, суммарная функция потери CycleGAN имеет следующий

вид:

L(G,F,DX , DY ) = LGAN(G,DY , X, Y ) + LGAN(F,DX , Y,X) + λLcyc(G,F ),

где параметр λ контролирует зависимость отображений друг от друга.

Цель оптимизации:

G∗, F ∗ = argmin
G,F

max
DX ,DY

L(G,F,DX , DY ).

Качественные результаты были продемонстрированы для нескольких за-

дач, таких как преобразование стиля коллекции изображений, трансформация

объектов, улучшение качества фотографий и т. д.
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1.2 TraVeLGAN

В 2019-ом году исследователями Йельского университета был предложен

новый подход для решения задачи отображения изображений из одного доме-

на в другой. Данный подход был назван Translation by Transformation Vector

Learning [4].

Так как существует бесконечное множество отображений между двумя

доменами, то отсутствуют гарантии, что после отображения некоторое отдель-

ное изображение из исходного домена будет обладать какими-либо общими

характеристиками с его представлением в целевом домене. Некоторые методы

решают эту проблему путем регуляризации семейства генераторов. Так, ре-

гуляризация введенная CycleGAN, накладывает на отображения ограничение

быть обратными друг другу, известное как свойство согласованности цикла.

Однако подобные ограничения, накладываемые на генераторы, могут препят-

ствовать обучению более сложным функциям отображения между различными

доменами, заставляя генераторы быть близкими функциям тождества.

Модель TraVeLGAN в дополнение к генератору и дискриминатору ис-

пользует вспомогательную сиамскую сеть с целью создания латентного про-

странства данных для определения высокоуровневых семантических призна-

ков, характеризующих домены. Данное пространство направляет генератор во

время обучения, заставляя его сохранять векторную арифметику между точка-

ми в этом пространстве. Вектор, преобразующий одно изображение в другое в

исходном домене, должен являться тем же самым вектором, который преобра-

зует сгенерированную версию этого изображения в сгенерированную версию

другого в целевом домене.

TraVeLGAN отличается от предыдущих работ несколькими особенно-

стями:

1. отсутствует необходимость в ограничении архитектуры генератора, а

также в обучении согласованию циклов или связыванию весов генерато-

ра;

2. для оценки сходства между оригинальными и сгенерированными изоб-

ражениями применяется отдельная сеть;

3. TraVeLGAN добавляет возможность отображения в неконтролируемую

область благодаря применению латентного пространства, объясняющего

какие аспекты конкретного изображения были использованы для опре-
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деления его представления в целевом домене.

Таким образом, модель TraVeLGAN способна обучаться отображениям

между сложными, неоднородными доменами, требующими значительных и

разнообразных трансформаций.
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2 Разработка приложения для задачи стилизации аудио файла

В ходе практической части дипломной работы были созданы две ге-

неративных состязательных сети, основанные на архитектуре CycleGAN и

TraVeLGAN для решения задачи трансформации стиля аудио файла по сред-

ствам представления его в виде mel-спектограммы.

2.1 Выбор средств и библиотек разработки

В качестве языка программирования был использован язык Python 3.6.0.

Для разработки использовались следующие пакеты и библиотеки:

— NumPy — фундаментальный пакет для вычислений на Python, добавляю-

щий поддержку многомерных массивов, высокоуровневых математиче-

ских функций, предназначенных для работы с многомерными массивами.

— Keras — открытая библиотека, предназначенная для работы с нейронны-

ми сетями, написанная на языке Python. Keras представляет собой над-

стройку над фреймворками Deeplearning4j, TensorFlow и Theano. Эта

библиотека содержит многочисленные реализации широко применяемых

строительных блоков нейронных сетей, таких как слои, целевые функ-

ции, оптимизаторы и т. д.

— LibROSA — библиотека, предназначенная для обработки аудио и музы-

кальных сигналов. На высоком уровне LibROSA обеспечивает реализа-

ции различных общих функций, используемых в области поиска инфор-

мации из музыки (MIR).

2.2 Подготовка данных

В качестве исходного датасета был использован датасет GTZAN Genre

Collection, состоящий из 1000 аудио файлов продолжительностью 30 секунд.

Набор данных содержит 10 жанров, каждый из которых представлен 100 тре-

ками, являющимися монофоническими 16-битными аудиофайлами 22050 Гц

в формате .au [5]. Для увеличения набора данных применялась аугмента-

ция — каждый трек был разделен на 10 треков по 3 секунды. С помощью

возможностей библиотеки libROSA каждый трек был представлен в виде mel-

спектограммы. Спектрограммы нормализовались в диапазоне [−1, 1], чтобы

соответствовать выходу функции активации генератора tanh.
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2.3 Модель, основанная на архитектуре TraVeLGAN

Так как спектограммы композиций различных музыкальных жанров за-

частую являются достаточно разнообразными, модель для задачи трансформа-

ции стиля музыкального произведения была основана на подходе, описанном

в [4]. Так, модель состоит из трех нейронных сетей: генератора, дискримина-

тора и вспомогательной сиамской сети.

Модель генератора основана на U-Net архитектуре нейронных сетей,

шаг смещения фильтра strides = 2. В качестве функции активации после

сверточных слоев использована функция ReLU, функция активации на вы-

ходном слое — tanh. Также после каждого сверточного слоя для стабилизации

обучения генератора применена Instance-нормализация [6].

Модель дискриминатора состоит из трех сверточных слоев, функция ак-

тивации — LeakyReLU с параметром alpha = 0.2. Для ускорения обучения по-

сле каждого сверточного слоя применена Batch— нормализация. Код функции

создания модели дискриминатора представлен ниже:

Сиамская нейронная сеть также состоит из трех сверточных слоев, функ-

ция активации — LeakyReLU, шаг смещения фильтра — strides = 2, размер-

ность вектора признаков — 128.

2.4 Обучение модели

Для обучения модели использовалась платформа Google Colab.

Продолжительность обучения модели составила 2000 эпох. Для моделей

генератора и дискриминатора использовался оптимизатор Adam, шаг обучения

дискриминатора был выбран равным lrD = 0.0002, шаг обучения генератора и

сиамской сети — lrG,S
= 0.0004 [7].

Алгоритм обучения генеративной состязательной сети:

Пусть X — исходный домен (жанр), Y — целевой домен, x ∈ X — произ-

вольный представитель данного жанра (сегмент аудио трека, представленный

в виде спектограммы), y ∈ Y — произвольный представитель целевого жанра.

1. Спектограмма x размерности M × L, где M — количество mel каналов

(M = 128), L < t, делится на две равные части x1 и x2 размерности

M × L
2 .

2. Вычисление результата работы генеративной сети G на входных данных

x1 и x2, ŷ1 = G(x1) и ŷ2 = G(x2).
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3. Вычисление векторов признаков сиамской сетью S: S(x1), S(x2), S(ŷ1),

S(ŷ2), где ŷ1 = G(x1), ŷ2 = G(x2).

4. Объединение спектограмм ŷ1 и ŷ2 в спектограмму ŷ размерности M ×L.

5. Вычисление значения функции потери дискриминатора LDr
на спекто-

грамме y ∈ Y из целевого домена.

6. Вычисление значения функции потери дискриминатора LDf
на сгенери-

рованной спектограмме ŷ ∈ G(X).

7. Вычисление значения функции потери генератора LG по ошибке дискри-

минатора LDf
.

8. Вычисление значения функции потери сиамской сети LS для пары (x1, x2).

9. Вычисление значения функции потери LTraV eL по входным данным

(S(x1), S(x2), S(ŷ1), S(ŷ2)).

10. Обновление дискриминатора D по ошибке LD = LDr+LDr

2 , обновление

шага обучения lrD .

11. Обновление генератора G по ошибке LG + LTraV eL + αLS, обновление

шага обучения lrG,S
.

Функции состязательной потери дискриминатора и генератора:

LD,adv = −Ey∼Y [min(0,−1 +D(y))]− Ex∼X [min(0,−1−D(G(x)))]

LG,adv = −Ex∼XD(G(x))

Функция потери TraVeL:

L(G,S),T raV eL = E(x1,x2)∼X
[
cos_similarity(t12, t

′
12) + ‖t12 − t′12‖22

]
tij = S(xi)− S(xj)

t′ij = S(G(xi))− S(G(xj)).

Функция сравнительной потери сиамской сети (Contrastive Loss):

LS,margin = E(x1,x2)∼X max(0, (δ − ‖t12‖2)).

Таким образом, суммарные функции потерь для генератора, дискрими-
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натора, сиамской сети определяются следующим образом:

LD = LD,adv

LG = LG,adv + αL(G,S),T raV eL

LS = αL(G,S),T raV eL + βLS,margin.

После окончания процесса обучения результат работы генеративной сети

для заданной композиции определяется следующим образом:

1. Композиция разбивается на сегменты ti продолжительности 3 секунды.

2. Для каждого трека определяется mel-спектограмма spectogram, норма-

лизованная в диапазоне [−1, 1].
3. Каждая спектограмма spectogram разделяется на 2 равные части sl и sr,

каждая из которых поступает на вход генеративной сети G.

4. Сгенерированные спектограммы gl = G(sl) и gr = G(sr), полученные на

выходе генератора объединяются в единую спектограмму g_spectogrami.

5. Спектограммы g_spectogrami, вычисленные для всех сегментов ti, пе-

реводятся в wave формат и объединяются в единую композицию.

2.5 Модель, основанная на архитектуре CycleGAN

Модель, основанная на архитектуре CycleGAN состоит из двух генера-

торов GA, GB, дискриминаторов DA, DB и составных моделей CA, CB.

Составная модель требуется для каждой модели генератора и отвечает

за обновление весов генеративной сети, в также сообщение данной инфор-

мации соответствующей модели дискриминатора и другого генератора. Это

может быть достигнуто путем маркировки весов других моделей как неспо-

собных к обучению в контексте составной модели, чтобы гарантировать, что

обновляются только веса предполагаемого генератора.

Составная модель генератора GA:

— Состязательная потеря: B → GA → A→ DA → [true/false]

— Потеря идентичности: A→ GA → A

— Потеря прямого цикла: B → GA → A→ GB → B

— Потеря обратного цикла: A→ GB → B → GA → A

Модели дискриминатора и генератора аналогичны соответствующим мо-

делям, описанным для сети, основанной на архитектуре TraVeLGAN.
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2.6 Обучение модели

Обучение осуществлялось следующим образом:

1. Формируется выборка из представителей доменов A, B — {ai}, {bi} с

меткой 1.

2. Генерируются представили противоположных доменов {âi}, {b̂i}, где âi =

GA(bi), b̂i = GB(ai) с меткой 0.

3. Обновляются веса генератора GX , дискриминатора DX ;

4. Обновляются веса генератора GY , дискриминатора DY .

2.7 Результаты эксперимента

В ходе эксперимента обе модели, основанные на архитектуре TraVelGAN

и CycleGAN, были обучены для задачи отображения mel-спектограмм компо-

зиций жанра «Классика» в mel-спектограммы жанра «Джаз». Обучение неко-

торому стабильному универсальному отображению может являться довольно

затруднительной задачей в связи с тем, что mel-спектограммы аудио файлов,

являющихся представителями не только различных, но и одинаковых жанров,

могут достаточно сильно отличаться.

В результате эксперимента было выявлено, что примеры, сгенерирован-

ные сетью, основанной на архитектуре TraVelGAN значительно превосходят

результаты, сгенерированные моделью, основанной на архитектуре CycleGAN.

Одним из основных обоснований полученных результатов может являться то,

что ограничения, накладываемые архитектурой CycleGAN на генеративные

сети быть обратными друг другу отображениями, приводит к тому, что модель

генератора становится близкой функции тождества. Так, на практике было

получено, что композиции, сгенерированные моделью, основанной на архи-

тектуре CycleGAN, являются очень схожими с исходными аудио файлами.

2.8 Описание приложения

Для нейронной сети, основанной на архитектуре TraVeLGAN, показав-

шей лучший результат, был написан web-интерфейс. Для клиентской части

использовались HTLM, CSS, JavaScript, JQuery, серверная часть была написа-

на с использованием легковесного фреймворка Flask.

При выборе композиции происходит ее отправка на сервер для последу-

ющей обработки. При получении запроса на обработку композиции по адресу
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/transfer/{genre} на сервере вызывается метод process сервиса, который

при первом обращении загружает соответствующую модель в память.

Результирующий аудио файл, сгенерированный моделью, сохраняется

в формате wave, ссылка на сгенерированный файл передается клиенту для

загрузки и дальнейшего воспроизведения.
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ЗАКЛЮЧЕНИЕ

Таким образом, в ходе данной работы были рассмотрены основные прин-

ципы работы генеративных состязательных сетей, модели, построенные на

основе архитектуры GAN, добившиеся в недавнее время выдающихся ре-

зультатов для генерации и стилизации изображений, такие как CycleGAN,

TraVeLGAN.

Были созданы генеративные состязательные сети, основанные на архи-

тектуре TraVeLGAN и CycleGAN, для решения задачи трансформирования

жанра музыкального произведения. В качестве исходного домена был выбран

жанр «Классическая музыка», для результирующего — «Джаз». Продолжитель-

ность обучения составила 2000 эпох.

Основная сложность задачи отображения аудио файлов из одного стиля

в другой путем представления их в виде спектограм связана с тем, что в

результате данного преобразования часть информации теряется, в связи с чем,

возможно некоторое зашумление восстановленного сгенерированного сигнала.

Тем не менее, полученные результаты подтвердили возможность при-

менения генеративных состязательных сетей для задачи трансформирования

стиля аудио файлов, представленных в графическом виде (спектограммы).

Также на практике было подтверждено преимущество подхода, описан-

ного для TraVeLGAN, над моделями, основанными на архитектуре CycleGAN,

для решения задачи отображения между достаточно сильно различающими-

ся доменами, в частности для отображения mel-спектограмм одного жанра в

другой.

Возможными альтернативными способами, обходящими проблемы, воз-

никающие при работе со звуком, представленном в виде спектограмм, явля-

ется представление композиций в виде последовательности нот и аккордов,

использование midi файлов для обучения.
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