
МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение

высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ

ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ИМЕНИ Н. Г. ЧЕРНЫШЕВСКОГО»

Кафедра математической кибернетики и компьютерных наук

РАЗРАБОТКА ПРИЛОЖЕНИЯ НЕФУНКЦИОНАЛЬНОГО

ТЕСТИРОВАНИЯ ВЫСОКОНАГРУЖЕННЫХ РАСПРЕДЕЛЕННЫХ

СИСТЕМ

АВТОРЕФЕРАТ БАКАЛАВРСКОЙ РАБОТЫ

Студентки 4 курса 411 группы

направления 02.03.02 — Фундаментальная информатика и информационные

технологии

факультета КНиИТ

Спасибо Ольги Олеговны

Научный руководитель

ст. преподаватель, М. И. Сафрончик

Заведующий кафедрой

к. ф.-м. н., доцент А. С. Иванов

Саратов 2020

СОДЕРЖАНИЕ

ВВЕДЕНИЕ . 3

1 Теоретические аспекты . 5

1.1 Тестирование ПО . 5

1.2 Фреймворк нагрузочного тестирования Gatling . 7

2 Практика . 10

2.1 Описание тестируемой системы мониторинга . 10

2.2 Разработка программного обеспечения . 10

2.3 Результаты работы . 13

ЗАКЛЮЧЕНИЕ . 16

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ . 17

ВВЕДЕНИЕ

Подавляющее большинство широко распространенных и часто исполь-

зуемых компьютерных решений и приложений представляет собой высокона-

груженные распределенные системы, асинхронно работающие с огромными

объемами информации. В связи с этим существует необходимость присталь-

ного контроля за бесперебойной работой систем, который достигается, помимо

построения соответствующей инфраструктуры, с помощью эффективно орга-

низованного процесса тестирования. На сегодняшний день существует мно-

жество сложных компьютеризированных систем, цена ошибки которых очень

высока: системы мониторинга частоты сердечного ритма; системы автомати-

ческого управления полётами и поездками; системы, оказывающие влияние на

экономику и производство, и другие.

Актуальность проблемы поиска уязвимостей и анализа надежности и за-

щищенности систем очень высока. Для достижения высокого уровня тестиро-

вания необходимо использовать не менее сложные инструменты тестирования.

Целью данной работы является создание приложения для тестирования

систем мониторинга биржевых площадок. В ходе работы необходимо про-

анализировать и сравнить некоторые решения, предназначенные для создания

сценариев нефункционального тестирования для оценки отказоустойчивости

и стрессоустойчивости системы, скорости ее восстановления после сбоев, ана-

лиз процессов репликации и резервного копирования, предельного числа ак-

тивных пользователей и так далее.

Полученные результаты анализа используются для:

• разработки приложения для тестирования систем мониторинга бирже-

вых площадок;

• анализа полученных в ходе исследования метрик и статистик;

• автоматизированного представления результатов тестирования в до-

ступной визуальной форме в виде графиков и диаграмм.

Объектом исследования является биржевая система, работающая с про-

токолами обмена финансовой (биржевой) информацией, такими как междуна-

родный стандарт FIX и проприетарный бинарный протокол NATIVE.

Предметом исследования является возможность создания приложения,

оценивающего отказоустойчивость и надежность системы мониторинга бир-

жевой платформы.

3

Программные средства, используемые в ходе работы:IntelliJ IDEA 2019.1.3

(Community Edition, Build #IC-191.7479.19, built on May 28, 2019) JRE: 1.8.0_202-

release-1483-b58 x86_64, JVM: OpenJDK 64-Bit Server VM, Charles Web Debugging

Proxy (version 4.5.6), Gatling Tool (version 3.3.1 (November 7th, 2019) License:

Apache License 2.0), Apache Maven 3.6.1

4

1 Теоретические аспекты

1.1 Тестирование ПО

Существует множество общепринятых определений тестирования про-

граммного обеспечения.

В наиболее широком смысле, тестирование программного обеспечения —

это одна из техник контроля качества, включающая в себя следующие меро-

приятия:

• планирование работ;

• проектирование тестов;

• выполнение тестирования;

• анализ полученных результатов.

Очень важными понятиями в тестировании программного обеспечения

являются верификация и валидация [1].

Верификация – это процесс оценки системы или её компонентов с целью

определения того, удовлетворяют ли результаты текущего этапа разработки

условиям, сформированным в начале этого этапа, то есть выполняются ли

цели, сроки, задачи по разработке проекта, определенные в начале текущей

фазы.

Валидация – это определение соответствия разрабатываемого программ-

ного обеспечения ожиданиям и потребностям пользователя, требованиям к

системе.

Множество определений международных стандартов ISO сводится к сле-

дующему: тестирование программного обеспечения – это процесс исследова-

ния (статическое тестирование) и/или испытания (динамическое тестирова-

ние) программного обеспечения, целью которых является проверка соответ-

ствия между фактическим поведением программного средства и его ожида-

емым поведением после выполнения конечного набора тестов, выбранного

определенным (в зависимости от методологии) образом [2].

Можно выделить следующие цели тестирования программного обеспе-

чения [3]:

— повышение вероятности того, что приложение, находящееся под тести-

рованием, будет работать правильно при любых обстоятельствах;

— повышение вероятности того, что приложение, находящееся под тести-

рованием, будет соответствовать всем описанным требованиям;

5

— предоставление актуальной информации о состоянии продукта в опре-

деленный момент времени.

Все виды тестирования программного обеспечения, в зависимости от

преследуемых целей и объекта/объектов тестирования, можно разделить на

следующие три группы:

• функциональные;

• нефункциональные;

• связанные с изменениями.

Функциональное тестирование – это процесс проверки того, в какой

степени реальные функции продукта соответствуют функциональными требо-

ваниями, описанным в спецификации (документации) этого продукта. Виды

функционального тестирования основываются на функциях, выполняемых си-

стемой, и могут проводиться на всех уровнях тестирования (компонентном,

интеграционном, системном, приемочном). Как правило, помимо функцио-

нальных спецификаций, эти функции описываются в требованиях или в виде

“случаев использования системы”м [4].

Тестирование функциональности может проводиться в двух областях:

• требования;

• бизнес-процессы.

Тестирование в области требований использует спецификацию функци-

ональных требований к системе как основу для дизайна тест-кейсов. Обычно

составляются списки того, что должно тестироваться, а что нет, приорите-

зируются требования на основе рисков (если это не сделано в документе с

требованиями), а на основе этого и тестовые сценарии. Это позволяет фоку-

сироваться и не упустить при тестировании наиболее важный функционал.

Тестирование в области бизнес-процессов базируется на знаниях этих

бизнес-процессов, которые описывают сценарии ежедневного использования

системы. В этом случае тестовые сценарии, как правило, основываются на

случаях использования системы. Зачастую тестирование на основе бизнес-

процессов находит те баги, что обнаружились бы конечными пользователями

в первую очередь, если бы качественное тестирование не было проведено

своевременно.

Нефункциональное тестирование – это процесс, относящийся к проверке

свойств, которые не относятся к функциям разработанного продукта.

6

Данные свойства определяются нефункциональными требованиями, ко-

торые характеризуют разработанный продукт с таких сторон, как [1]:

1. надежность (способность продукта адекватно реагировать на непредви-

денное использование);

2. производительность (способность продукта сохранять работоспособность

под разными уровнями нагрузки);

3. удобство (анализ удобства использования приложения с позиции конеч-

ного пользователя);

4. масштабируемость (способность продукта функционировать при разных

масштабах использования; например, при частном использовании и при

использовании для нужд корпорации);

5. безопасность (степень защиты данных пользователей); портируемость

(способность продукта функционировать с использованием различных

платформ) и много других качеств.

Подытожив описание двух видов тестирования, можно заключить, что

функциональное тестирование отвечает на вопрос “как работает система?”,

а нефункциональное тестирование отвечает на вопрос “как хорошо система

выполняет свои функции?” [5]

1.2 Фреймворк нагрузочного тестирования Gatling

С развитием отрасли нагрузочного тестирования и ростом необходимо-

сти его применения разрабатывались различные новые тестовые инструменты

- фреймворки. Фреймворки нагрузочного тестирования различаются в архи-

тектурном плане, качеством эмулируемых сетевых соединений, пороговым

числом эмулируемых активных пользователей сети, количеством поддержива-

емых протоколов, интерфейсом и так далее. В зависимости от особенностей

предметной области и специфики решаемой проблемы стоит выбирать соот-

ветствующий инструмент нагрузочного тестирования.

Фреймворк Gatling — мощный инструмент нагрузочного тестирования,

имеющий высокую производительность и широту поддержки сетевых прото-

колов “из коробки”.

Gatling отличается отличной поддержкой HTTP-протокола, поэтому дан-

ный фреймворк — оптимальное решение для тестирования HTTP-сервера. Так

как ядро Gatling не имеет привязки к определенному протоколу, в будущем

фреймворк Gatling возможно будет иметь такую же надежную поддержку и

7

других сетевых протоколов. В настоящее время, фреймворк Gatling имеет под-

держку JMS (Java Message Service — стандарт промежуточного ПО для рас-

сылки сообщений, позволяющий приложениям, выполненным на платформе

Java EE, создавать, посылать, получать и читать сообщения).

Разработчики фреймворка Gatling стремились создать ресурсоемкий эф-

фективный инструмент нагрузочного тестирования, сценарии для которого

легко читались другими разработчиками и отражали предметную область и

специфику проекта. Gatling имеет поддержку DSL(domain-specific language)

для разработки тестовых сценариев, расширение над языком Scala [6].

Gatling - это фреймворк с асинхронной архитектурой. Так как Gatling

работает с протоколами (например, HTTP) Gatling поддерживает асинхрон-

ную работу до возникновения блокирующих друг друга сообщений. Поэтому

действия пользователей системы реализованы не через разделение потоков

на рабочей машине, а через отправку асинхронных сообщений, что позволя-

ет сэкономить затраты на поддержку аппаратных средств. Таким образом, с

использованием фреймворка Gatling не является проблемой симуляция одно-

временной работы тысяч пользователей.

К недостаткам данного фреймворка можно отнести отсутствие подроб-

ной документации и отсутствие поддержки функциональностей фреймворка

предыдущих версий. Большинство пользователей отмечают, что новые версии

Gatling зачастую несовместимы с проектом, написанным с использованием

более поздних версий. Gatling ориентирован на достаточно опытных разра-

ботчиков ПО для нагрузочного тестирования, так как не содержит сам по

себе графического интерфейса для запуска и отладки приложений. Сценарии

с использованием фреймворка Gatling могут быть написаны только на языке

программирования Scala, который не является одним из самых распространен-

ных, что также увеличивает входные требования для разработчиков [7].

Cуществует 8 способов выпонения сценария:

— nothingFor (duration): пауза при выполнении сценариев.

— atOnceUsers (nbUsers): внедряет заданное количество пользователей од-

новременно.

— rampUsers (nbUsers) in (duration): вводит заданное количество пользова-

телей с линейным изменением в течение заданной продолжительности.

— constantUsersPerSec (speed) in (duration): вводит пользователей с посто-

8

янной скоростью, определенной в “пользователях в секунду”, в течение

заданной продолжительности. Пользователи будут вводиться через рав-

ные промежутки времени.

— constantUsersPerSec (speed) in (duration) randomized: вводит пользовате-

лей с постоянной скоростью, определенной в пользователях в секунду,

в течение заданной продолжительности. Пользователи будут вводиться

через случайные интервалы времени.

— rampUsersPerSec (rate1) - (rate2) in (duration): вводит пользователей от

начальной скорости до целевой скорости, определенной в “пользователях

в секунду”, в течение заданной продолжительности. Пользователи будут

вводиться через равные промежутки времени.

— rampUsersPerSec (rate1) - (rate2) in (duration) randomized: вводит пользо-

вателей от начальной скорости до целевой скорости, определенной поль-

зователями в секунду, в течение заданной продолжительности. Пользо-

ватели будут вводиться через случайные интервалы времени.

— heavyisideUsers (nbUsers) in (duration) : вводит заданное число пользо-

вателей после плавного приближения пошаговой функции критических

значений, определенной на заданной продолжительности.

9

2 Практика

2.1 Описание тестируемой системы мониторинга

В ходе работы требуется создать симуляцию поведения несколько тысяч

пользователей для системы мониторинга трейдинговых операций в биржевой

системе. Приложение развернуто на удаленной машине, доступ на которую

отсутствует в связи с политикой безопасности. Приложение доступно только

для устройств, подключенных к локальной защищенной LAN-сети. На рисунке

1 приведен снимок экрана окна рассматриваемой системы мониторинга.

Рисунок 1 – окно системы мониторинга Market Replay после авторизации

2.2 Разработка программного обеспечения

В ходе данной работы были разработаны нагрузочные тесты на языке

Scala с применением фреймворка Gatling для высоконагруженного распреде-

ленного приложения.

Для реализации поставленных в работе целей будут решены следующие

задачи:

• создание приложения с использованием фреймворка Gatling

• реализация нагрузки свыше 1000 пользователей

• реализация механизма аутентификации посредством передачи токена

• исследование различных методов роста числа активных пользовате-

лей — линейный, квадратичный рост, резкий скачок (увеличение в десятки и

сотни раз) подключений к системе, иными словами - rampUp и так далее

10

• построение наглядных отчетов о проделанной работе

• определение критических значений, значительно влияющих на работу

системы мониторига

В ходе данной работы был создан Maven-проект в интегрированной

среде разработки IntelliJ IDEA, разработанной компанией JetBrains. Maven —

фреймворк для автоматизации сборки проектов на основе описания их струк-

туры в файлах на языке POM, являющимся подмножеством XML. В файле

pom.xml задаются необходимые зависимости, подключаются библиотеки и ре-

позитории, необходимые для успешной сборки проекта. Maven предоставляет

возможность автоматически импортировать необходимые библиотеки на ло-

кальную машину в директорию .m2, к которой фреймворк непосредственно

обращается при компиляции и сборки проекта. Так как локальная машина, с

которой выполянется разработка проекта находится в закрытой защещенной

сети, доступ в ней на большинство веб-сайтов закрыт, также закрыт доступ к

удаленному репозиторию https://mvnrepository.com/artifact/org.apache. Все па-

кеты и библиотеки, используемые в проекте, были установлены вручную.

На рисунке 2 изображено стартовое окно Gatling Recoder.

Рисунок 2 – окно запуска фреймворка Gatling

Существуют два вида автоматизированной записи тестовых сценариев —

в режиме прокси-сервера [8] и при передаче HAR- файла. Для записи в режиме

11

прокси-сервера необходимо, чтобы приложение было запущено локально на

той же машине на которой запущен Gatling Recoder. Действия пользователя

автоматически отражаются в виде посылаемых серверу HTTP-запросов в окне

Gatling Recoder. Записать HAR-файл для передачи его Gatling Recoder можно

непосредственно в браузере (Например, в Google Chrome это можно сделать в

разделе Developer Tools -> Network).

Для решения поставленной задачи невозможно использовать автомати-

зированную запись действий пользователя системы, так как разрабатываемый

проект и приложение по мониторингу биржевой системы расположены на

разных машинах, а сеть через которую есть доступ к приложению является

защищенной и закрытой, что не позволяет отразить в полной мере запросы

клиентов и ответы сервера.

На рисунке 3 отражена структура разработанного проекта.

Рисунок 3 – получение и отправка HTTP-запросов от хоста https://10.61.9.104:22650

В директории $project/test/scala/simulations находятся основные тестовые

сценарии.

В основном классе классе $project/test/scala/simulations/Ts2Ver2.scala ини-

циализированы :

• переменная url — переменная строкового типа, которая содержит адрес

хоста;

12

• переменные c, hr24, min, sec были созданы для записи в лог-файл

данных каждого пользователя и время его подключения к хосту;

• переменная httpProtocol задает непосредственно параметры подключе-

ния к хосту https://10.61.9.104:22650 и защищенному веб-сокету;

wss://10.61.9.104:22650/websocket

• переменные headers содержат заголовки к HTTP-запросам, которые

меняются в зависимости от характера запроса. В headers перечислены только

поля заголовков, которые следует изменить. Неперечисленные поля сохраняют

значения присвоенные в предыдущем заголовке;

• переменная csvFeeder содержит путь до csv-файла, из которого при-

ложение собирает данные для парсинга и параллельной отправки данных на

хост;

• переменная scn содержит непосредственно вызов HTTP-запросов, из-

менения заголовков, подключения к веб-сокету и хосту, вызов feeder-a для

параллельного одновременного подключения пользователей с разными вре-

менными токенами;

• метод setUP запускает сценарий на выполнение, задавая количество

пользователей и характер роста нагрузки на приложение.

2.3 Результаты работы

В результате работы были построены графики и отчеты автоматизиро-

ванными средствами фреймворка нагрузочного тестирования Gatling.

В ходе работы для разных режимов генерации нагрузки были собраны

следующие статистики:

• успешность/неуспешность выполнения запроса

• текст сообщений об ошибках

• количество успешных/неуспешных запросов

• количество запросов, выполняющихся за минимальное время обработ-

ки запросов

• количество запросов, выполняющихся за наибольшее время обработки

запросов

• количество запросов, на выполнение которых требуется среднее коли-

чество времени и другие;

Собранные статистики позволили оценить время обработки запросов си-

стемой мониторинга биржевой платформы, оценить производительность си-

13

стемы при разных типах нагрузки, а так же определить среднее число запросов

в секунду.

При выполнении разработанного приложения встречается ошибка сер-

вера 401 - Unauthorized, так как логины и пароли, используемые приложением,

также используется тестировщиками системы, разработчиками и менеджерами

проекта. Если в момент запуска приложения для нагрузочного тестирования,

пользователь уже авторизован в системе, то отправляемые через приложение

данные учетной записи такого пользователя не смогут быть корректно обра-

ботаны сервером. На рисунке ?? видно, что на момент запуска приложения 4

пользователя системы уже были авторизованы.

В ходе работы были определены параметры, оказавшимися критически-

ми для работы системы — 3000 пользователей в режиме rampUsers (3000) in

(1200).

На рисунках 4, 5, 6 отражены графики и метрики для вызова сценария в

режиме rampUp.

Рисунок 4 – отчет, демонстрирующий число получаемых от сервера ответов в секунду

14

Рисунок 5 – отчет, демонстрирующий распределение времени ответа

Рисунок 6 – отчет, демонстрирующий число активных пользователей в системе

15

ЗАКЛЮЧЕНИЕ

В ходе дипломной работы были решены следующие задачи:

— рассмотрение различных фреймворков нагрузочного тестирования;

— разработка приложения нагрузочного тестирования для высоконагружен-

ной распределенной системы мониторинга;

— анализ критических значений параметров работы сиситемы;

— построение наглядных графиков и отчетов.

16

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1 Криспин, Л. Гибкое тестирование. Практическое руководство для тестиров-

щиков ПО и гибких команд / Л. Криспин. — Вильямс, 2016. — С. 174– 176.

2 Куликов, С. С. Тестирование программного обеспечения. Базовый курс /

С. С. Куликов. — 2017. — С. 312.

3 Матвеевский, В. Р. Надежность технических систем / В. Р. Матвеевский. —

Московский государственный институт электроники и математики, 2002. —

С. 113.

4 Cавин, Р. Тестирование Дот Ком, или Пособие по жестокому обращению с

багами в интернет-стартапах / Р. Cавин. — Дело, 2007. — С. 124 – 136.

5 Официальный сайт ISTQB - International Software Testing Qualifications

Board [Электронный ресурс]. — URL: https://www.istqb.org (Дата обращения

22.04.2020). Загл. с экр. Яз. англ.

6 Tolledo, R. Gatling: Take your performance tests to the next

level [Электронный ресурс] / R. Tolledo. — Pp. 12–14. —

URL: https://www.thoughtworks.com/gatling-take-your-performance-tests-

next-level (Дата обращения 20.04.2020). Загл. с экр. Яз. англ.

7 Официальный сайт фреймворка Gatling [Электронный ресурс]. —

URL: https://gatling.io (Дата обращения 22.04.2020). Загл. с экр. Яз. англ.

8 Официальный сайт Charles Web Debugging Proxy [Электронный ресурс]. —

URL: https://www.charlesproxy.com (Дата обращения 19.04.2020). Загл. с экр.

Яз. англ.

17

