
МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение

высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ

ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ИМЕНИ Н. Г. ЧЕРНЫШЕВСКОГО»

Кафедра математической кибернетики и компьютерных наук

СОЗДАНИЕ МОБИЛЬНОГО ПРИЛОЖЕНИЯ С ПОМОЩЬЮ ЯЗЫКА

SWIFT

АВТОРЕФЕРАТ БАКАЛАВРСКОЙ РАБОТЫ

Студентки 4 курса 411 группы

направления 02.03.02 — Фундаментальная информатика и информационные

технологии

факультета КНиИТ

Панченко Анастасии Ильиничны

Научный руководитель

доцент, к. ф.-м. н. А. С. Иванов

Заведующий кафедрой

к. ф.-м. н. А. С. Иванов

Саратов 2020

СОДЕРЖАНИЕ

ВВЕДЕНИЕ . 3

1 Описание используемых средств и технологий . 5

1.1 Firebase . 5

1.2 Interface Builder . 5

2 Разработка мобильного приложения . 7

2.1 Приложение с точки зрения программиста . 7

2.1.1 Database . 8

2.1.2 UserProfileViewController . 8

2.1.3 EditProfileViewController . 9

2.1.4 DialogsViewController . 9

2.1.5 Dialogs . 9

2.1.6 ChatViewController . 10

2.1.7 MapViewController . 10

2.1.8 ActionListScreen . 11

2.1.9 Структура базы данных приложения . 11

2.2 Взаимодействие с приложением . 13

ЗАКЛЮЧЕНИЕ . 15

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ . 16

ВВЕДЕНИЕ

В современном мире всё больше растёт потребность в совершенство-

вании мобильных технологий и программного обеспечения. Потребность в

общении с людьми является движущей силой к новым разработкам и со-

вершенствованию уже имеющихся. Общение в многочисленных социальных

сетях является виртуальным общением, а в последнее время у людей возни-

кает интерес в личном, живом общении, основанном, например, на общих

интересах, увлечениях и хобби.

Поскольку тема «живого общения» в последнее время становится всё

более популярной, пришла мысль разработать мобильное приложение для по-

иска людей по интересам, в котором делается упор на общение в реальной

жизни.

Актуальность работы заключается в том, что пользователи мобильно-

го приложения смогут осуществить возможность найти единомышленников

и установить контакты в сфере своих увлечений, назначая встречи в «живом

пространстве», что вполне в духе реального времени, когда люди устали от

виртуального мира и стремятся к получению неповторимой атмосферы реаль-

ного общения.

Целью настоящей работы является создание iOS приложения, предна-

значенного для установления и развития контактов между пользователями в

соответствии с их интересами и увлечениями в реальном пространстве.

Для достижения цели должны быть решены следующие задачи:

— Изучить язык Swift.

— Ознакомиться с инструментами разработки для iOS приложений.

— Ознакомиться с библиотекой UIKit.

— Разработать iOS-приложение для встречи и общения людей в реальной

жизни.

Работа состоит из введения, двух глав, заключения, списка из 20 источ-

ников и трёх приложений.

В главе «Описание используемых средств и технологий» описывается

основная идея приложения и его минимальный функционал. Рассматривает-

ся выбор ОС для приложения и выбор облачной базы данных, описываются

особенности языка Swift. Рассматривается платформа Firebase для разработки

мобильных приложений, библиотека для создания интерфейса UIKit и про-

3

грамма Interface Builder.

В главе «Разработка мобильного приложения» рассматривается внут-

ренняя структура программы, объясняется работа наиболее важных классов.

Демонстрируется хранение зарегистрированных пользователей в Firebase, опи-

сывается структура хранения данных в базе. Также описывается и иллюстри-

руется подробное взаимодействие пользователя с интерфейсом приложения.

4

1 Описание используемых средств и технологий

В данном разделе рассмотрим платформу для разработки мобильных

приложений Firebase и программу для создания интерфейса Interface Builder.

1.1 Firebase

В данной работе используются следующие составляющие Firebase:

— Служба авторизации Firebase Authentication.

— Хранение данных в Cloud Firestore [1].

— Хранение изображений в Cloud Storage.

Функциональные составляющие Firebase позволяют программе получать

быстрый доступ к данным в реальном времени без потери скорости соеди-

нения и обмена информацией и при любом изменении синхронизировать и

отправлять на подключенное устройство обновления за доли секунды [2].

В данной работе для реализации чата в реальном времени и карты с отоб-

ражением меток в реальном времени используются асинхронные слушатели

для отслеживания обновления данных, хранящихся в коллекциях и докумен-

тах.

Асинхронный слушатель базы данных сообщает пользователю о храня-

щихся данных. Этот привязанный слушатель активируется один раз в начале

для первичного набора данных и потом срабатывает каждый раз при измене-

нии данных [3].

При использовании Firebase можно отметить такие положительные мо-

менты как:

— Простое получение и чтение данных;

— Использование базы в реальном времени;

— Несложное подключение и использование SDK;

— Подробная и понятная официальная документация;

— Мгновенное обновление на подключённом устройстве при изменении

данных.

Всё это делает Firebase удобным для использования при разработке при-

ложения.

1.2 Interface Builder

Interface Builder — это приложение от компании Apple, содержащее в себе

весь набор инструментов для создания графических интерфейсов в составе

5

IDE Xcode [4].

Interface Builder значительно облегчает разработку пользовательского ин-

терфейса. Используя его, можно создать различные элементы управления без

написания кода, например:

— кнопки, ползунки, текстовые поля и т.д.;

— варианты различных экранов;

— создание связей и переходов между экранами и т.д.

К плюсам Interface Builder можно отнести то, что при использовании

этого сервиса можно наглядно соединять и располагать составные элементы в

программе, устанавливать стили, шрифты и т.д., не прописывая код для каждо-

го элемента на экране. Interface Builder облегчает работу с табличными типами

и ячейками таблиц. Можно создавать таблицы практически полностью без на-

писания кода. Благодаря всему этому можно очень легко и быстро создать

желаемый интерфейс приложения [5].

Однако есть и минусы. Возможности Interface Builder не безграничны,

и если интерфейс приложения становится слишком сложным, то его придёт-

ся доделывать в коде. Так, например, не получится реализовать анимацию с

помощью этой программы. Также разработка интерфейса данным способом

подходит только для индивидуальных разработчиков, командная работа в этом

сервисе становится крайне затруднительной и проблемной.

В программе используются мобильные инструменты предварительной

визуализации — сториборды. Они имеют ряд достоинств:

— полностью виден сценарий разрабатываемого приложения и взаимосвязи

между его экранами;

— сториборды могут описывать переходы между различными окнами (пе-

реходы называются segues [6]), которые создаются путём соединения

двух экранов прямо в сториборде. Благодаря segues, разработчик пишет

меньше кода для пользовательского интерфейса [7].

6

2 Разработка мобильного приложения

В качестве практического задания в данной работе было разработано мо-

бильное приложение для iOS, предназначенное для установления и развития

контактов между пользователями в соответствии с их интересами и увлече-

ниями в «живом пространстве», а именно в рамках представленного города

(Саратов).

В приложении существует панель вкладок с 3 основными экранами:

1. Профиль — основная информация о пользователе;

2. Сообщения — список диалогов с другими пользователями;

3. Поиск друзей по городу — отображение меток пользователей на карте

города в реальном времени.

При нажатии на метку возможно два действия:

1. Просмотр профиля пользователя;

2. Переход на экран чата с выбранным человеком.

Более подробно интерфейс будет рассмотрен в разделе «Взаимодействие

с приложением».

Сначала рассмотрим внутреннее строение данного мобильного прило-

жения.

2.1 Приложение с точки зрения программиста

Рассмотрим более подробно внутреннюю структуру программы.

Файлы программы имеют два формата: .swift и .storyboard. Swift-файлы

содержат исходный код, написанный языке с одноимённым названием. Сто-

риборд — это визуальное представление пользовательского интерфейса при-

ложения, отображающее экраны и связи между этими экранами. Сториборд

позволяет подключать вид экрана (View) к контроллеру вида (View Controller),

а также управлять передачей данных между контроллерами вида [8].

Перечислим все файлы с форматом .storyboard:

1. Entry — представляет экраны входа и регистрации.

2. TabBar — видовое представление панели с тремя вкладками, которая име-

ет связи с другими сторибордами в виде ссылок.

3. DialogList — файл, который содержит экран со списком диалогов пользо-

вателей и экран чата, а также ссылку на экран просмотра профиля.

4. UserProfile — файл, который содержит экран профиля пользователя и

7

экран редактирования профиля.

5. Map — файл, который содержит экран с картой, экран создания метки

на карте и экран просмотра профиля, а также ссылку на экран чата с

конкретным пользователем.

Рассмотрим важные классы программы более подробно.

2.1.1 Database

Класс, содержащий основные функции для работы с базой данных. Пе-

речислим основные методы класса:

— createUser(_ email : String, _ password : String,

completion : @escaping (Error?) -> Void)— метод, который регистри-

рует нового пользователя в Firebase.

— signIn(_ email : String, _ password : String,

completion : @escaping (Error?) -> Void)— метод авторизации поль-

зователя.

— signOut() -> String?— метод для выхода пользователя из аккаунта.

— writeProfileData(userId : String, userData : [String : Any],

completion : @escaping (Error?) -> Void)— метод записи данных

профиля пользователя в базу.

— readProfileData(userId : String, completion :

@escaping (User?, Error?) -> Void)— метод чтения данных профи-

ля пользователя из базы. Данный метод имеет асинхронный слушатель,

который срабатывает при изменении документа пользователя в базе.

— downloadImage(urlString : String, completion :

@escaping (UIImage?) -> Void)— загрузка изображения пользователя

из Cloud Storage.

— sendPin(city : String, email : String, pin : [String : Any],

completion: @escaping (Error?) -> Void)— отправка информации о

созданной метке в базу данных.

2.1.2 UserProfileViewController

Класс, управляющий экраном профиля пользователя. Перечислим основ-

ные методы класса:

— viewDidLoad()— метод, загружающий данные профиля пользователя.

8

— editPhoto(_ sender: UIBarButtonItem)— метод, позволяющий поль-

зователю загрузить фотографию из галереи телефона. Данный метод

срабатывает при нажатии иконки камеры в верхнем левом углу экра-

на профиля пользователя.

— signOut(_ sender: Any)— метод, позволяющий пользователю выйти из

аккаунта. Данный метод срабатывает при нажатии иконки выхода в верх-

нем правом углу экрана профиля пользователя.

2.1.3 EditProfileViewController

Класс, управляющий экраном редактирования профиля. Методы класса:

— updateUserData(_ sender: UIButton)— метод, отправляющий изменён-

ные данные профиля пользователя в базу. Данный метод срабатывает при

нажатии кнопки «Сохранить» на экране редактирования профиля.

— viewWillAppear(_ animated: Bool)— метод, отображающий текущую

информацию профиля в текстовых полях для редактирования.

2.1.4 DialogsViewController

Класс, управляющий экраном списка диалогов. Перечислим основные

методы класса:

— prepare(for segue: UIStoryboardSegue, sender: Any?)— метод, пе-

редающий данные выбранного диалога на экран чата. Данный метод

срабатывает при нажатии на выбранную ячейку из таблицы диалогов.

— viewWillAppear(_ animated: Bool)— метод, получающий данные о диа-

логах пользователя.

— tableView(_ tableView: UITableView,

cellForRowAt indexPath: IndexPath) -> UITableViewCell— метод, за-

полняющий ячейку таблицы диалогов данными.

2.1.5 Dialogs

Класс, загружающий диалоги пользователя из базы данных. Метод

loadDialogs(fromUser : String, completion : @escaping () -> Void)

загружает данные каждого диалога из базы. Данный метод имеет асинхронный

слушатель, который срабатывает при изменении документов коллекции Dialogs

в базе данных.

9

2.1.6 ChatViewController

Класс, управляющий экраном чата. Перечислим основные методы клас-

са:

— viewWillAppear(_ animated: Bool)— метод, загружающий сообщения

переписки на экран.

— sendMessage(text : String, toUser : String,

completion : @escaping (Error?) -> Void)— метод, отправляющий

сообщение пользователю в базу данных.

— collectionView(_ collectionView: UICollectionView,

cellForItemAt indexPath: IndexPath) -> UICollectionViewCell—

метод, который заполняет данными ячейку таблицы чата и задаёт внеш-

ний вид облака сообщения.

2.1.7 MapViewController

Класс, управляющий экраном с картой. Перечислим основные методы

класса:

— longPressGesture(_ sender: UILongPressGestureRecognizer)— метод,

ставящий на карту метку-указатель в указанной точке и отображающий

адрес метки. Данный метод срабатывает при распознавании жеста дли-

тельного нажатия на карту.

— viewWillAppear(_ animated: Bool)— метод, загружающий метки поль-

зователей на карту.

— deleteWishPin(_ sender: UIBarButtonItem)— метод удаления метки

пользователя с карты. Данный метод срабатывает при нажатии на иконку

удаления метки в верхнем правом углу экрана с картой.

— mapView(_ mapView: MKMapView,

didSelect view: MKAnnotationView)— метод отображения информации

о выбранной метке на карте во всплывающем окне. Данный метод сра-

батывает при нажатии на метку.

— swipeDownAddress(gesture: UISwipeGestureRecognizer)

-> Void— метод, скрывающий всплывающие окна. Данный метод сра-

батывает при распознавании жеста смахивания вниз.

— prepare(for segue: UIStoryboardSegue, sender: Any?)— метод, пе-

редающий данные на экран создания метки, а также на экран просмотра

10

профиля выбранного пользователя. Данный метод срабатывает при на-

жатии кнопок «Создать метку» и «Посмотреть профиль» на экране с

картой.

2.1.8 ActionListScreen

Класс, управляющий экраном создания метки на карте. Основные мето-

ды класса:

— createPin(_ sender: UIButton)— метод, создающий новую метку на

карте. Данный метод срабатывает при нажатии кнопки «Создать» на

экране создания метки.

— tableView(_ tableView: UITableView,

cellForRowAt indexPath: IndexPath) -> UITableViewCell— метод, ко-

торый заполняет ячейки таблицы выбора формата встречи информацией

на экране создания метки.

2.1.9 Структура базы данных приложения

Для хранения данных в Cloud Firestore используются документы и кол-

лекции. Документ — это запись, содержащая поля. Документы хранятся в кол-

лекции. Коллекция может хранить документы с разным набором значений.

Также документ может содержать вложенные коллекции [9]. Рассмотрим по-

дробнее структуру хранения данных для нашего мобильного приложения.

В базе данных хранится две коллекции:

1. cities — хранение информации о городе;

2. userInfo — хранение информации о зарегистрированных пользователях.

Рассмотрим каждую коллекцию подробнее. На данный момент в кол-

лекции cities хранится один документ, который использует название города в

качестве идентификатора документа.

Данный документ имеет вложенную коллекцию MapPins. В данной кол-

лекции хранятся документы, которые содержат в себе информацию о добав-

ленной на карту метке. Каждый документ использует email пользователя в

качестве идентификатора. Документ содержит следующие поля:

— Населённый пункт и административный район заданной метки.

— Подробный адрес метки в рамках населённого пункта.

— Email пользователя.

— Имя.

11

— Фамилия.

— URL ссылка на изображение пользователя.

— Координаты метки.

— Желаемый формат встречи при знакомстве.

В коллекции userInfo хранятся документы, которые содержат информа-

цию о зарегистрированном пользователе. Каждый документ использует email

пользователя в качестве идентификатора. Документ содержит следующие по-

ля:

— Имя.

— Фамилия.

— Город.

— Возраст.

— URL ссылка на изображение пользователя.

— Пол.

— Основная информация о пользователе.

— Хобби и интересы.

— Любимые книги.

— Любимые фильмы.

— Любимая музыка.

Также документ может иметь различное число вложенных коллекций.

Вложенные коллекции с названием электронной почты хранят все сообщения

переписки между текущим пользователем и пользователем с соответствующим

названием коллекции. В таких коллекциях хранятся документы с заданными

полями:

— Email отправителя сообщения.

— Email получателя сообщения.

— Текст сообщения.

— Возраст.

— Дата и время отправки сообщения.

Также есть второй вид вложенной коллекции, которая называется Dialogs.

Она представляет собой заголовки диалогов и содержит документы с элек-

тронной почтой в качестве идентификатора. В каждом документе содежатся

следующие поля:

— Email отправителя сообщения.

12

— Email получателя сообщения.

— Текст последнего сообщения.

— Дата и время отправки последнего сообщения.

— Имя и фамилия пользователя, с которым ведётся переписка.

— URL ссылка на изображение пользователя, с которым ведётся переписка.

2.2 Взаимодействие с приложением

В данном разделе опишем подробное взаимодействие пользователя с

приложением.

При первом запуске приложения мы попадаем на экран входа. При нажа-

тии на кнопку «Зарегистрироваться» появляется соответствующий экран, где

предлагается ввести свой email и пароль.

После авторизации происходит переход на домашнюю страницу профи-

ля. Здесь можно заполнить данные своего профиля, нажав на кнопку «Редак-

тировать», а также загрузить фотографию при нажатии на иконку камеры в

верхнем левом углу. После этого откроется галерея для выбора фотографии.

Чтобы выйти из профиля, нужно нажать на иконку выхода, расположенную в

правом верхнем углу экрана.

Нажимая на вкладки на панели внизу, мы можем переключаться на экра-

ны профиля, сообщений и карты. При переходе на вкладку с изображением

окна диалога мы попадём в список диалогов, где будут отображаться перепис-

ки с другими пользователями.

Чтобы начать общение, нужно перейти на вкладку карты. Вкладка пред-

ставляет собой карту города, на которой отображаются метки других пользова-

телей. При длительном нажатии на выбранное место карты на ней появляется

метка с указателем, а также всплывает небольшое окно с адресом выбранной

точки. Внизу данного окна можно нажать на кнопку «Поставить метку» для

добавления своей метки на карту. После этого появится окно с таблицей, в

которой перечислены различные варианты занятий при знакомстве. После вы-

бора формата встречи нажимаем на кнопку «Создать», и попадаем обратно на

карту, на которой теперь создана наша метка.

Если нам мешают эти небольшие всплывающие окна, их можно скрыть

с помощью жеста, смахнув окно вниз. Если мы захотим поставить вторую

метку, то сначала нужно будет удалить предыдущую, иначе программа выдаст

сообщение с данным предупреждением, после чего вернёт нас на экран карты.

13

Для того чтобы удалить метку, нужно нажать на иконку перечёркнутой метки

в правом вернем углу. После подтверждения удаления метка пользователя

исчезнет с карты.

При нажатии на метку всплывает небольшое окно с информацией о

пользователе: на нём отображается миниатюра фотографии, имя пользовате-

ля, желаемый формат встречи при знакомстве и адрес текущей метки. Также

внизу этого окна можно нажать на кнопку «Посмотреть профиль», после че-

го мы попадём на экран просмотра профиля выбранного пользователя. При

прокрутке экрана можно изучить профиль подробнее, или нажать на кнопку

«Написать», чтобы перейти в чат с выбранным пользователем.

После отправки первого сообщения в чате можно выйти из вкладки

карты и перейти на вкладку сообщений: на экране появится новый диалог с

пользователем.

Если мы получим сообщение от другого человека, то диалог также со-

здастся во вкладке сообщений. Нажав на выбранный диалог, мы можем перей-

ти в чат и ответить на сообщение. Также в верхнем правом углу можно нажать

на иконку профиля и перейти на страницу профиля пользователя.

14

ЗАКЛЮЧЕНИЕ

Целью данной работы было создание мобильного приложения для опе-

рационной системы iOS, предназначенного для установления и развития кон-

тактов между пользователями в соответствии с их интересами и увлечениями

в «живом пространстве», а именно в рамках населенного пункта (г. Саратов).

В процессе написания работы были выполнены следующие задачи:

— Изучен язык Swift.

— Осуществлено ознакомление с инструментами разработки для iOS при-

ложений.

— Осуществлено ознакомление с библиотекой UIKit.

— Разработано iOS-приложение для встречи и общения людей в реальной

жизни.

Важным инструментом для разработки программы послужил язык про-

граммирования Swift. Коммуникативную основу мобильного приложения со-

здала встроенная карта AppleMaps от компании Apple, на которой база данных

Cloud Firestore может отображать данные в режиме реального времени. При

создании модели приложения был использован облачный сервис — Firebase,

сочетающий в себе такие функции как: служба аутентификации, база данных

в реальном времени, хранение файлов. Благодаря библиотеке UIKit и про-

грамме InterfaceBuider был создан простой, красивый и удобный интерфейс

приложения.

В результате было создано мобильное приложение с удобным и понят-

ным пользовательским интерфейсом для встречи и общения людей в реальной

жизни.

15

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1 Cloud Firestore — Firebase. [Электронный ресурс]. — URL: https:

//firebase.google.com/docs/firestore?authuser=0 (Дата обращения

20.05.2020). Загл. с экр. Яз. рус.

2 Что такое Cloud Firestore? [Электронный ресурс]. — URL: https:

//ua-blog.com/\T2A\cyrch\T2A\cyrt\T2A\cyro-\T2A\cyrt\T2A\cyra\

T2A\cyrk\T2A\cyro\T2A\cyre-cloud-firestore/ (Дата обращения

20.05.2020). Загл. с экр. Яз. рус.

3 Get realtime updates with Cloud Firestore. [Электронный ресурс]. —

URL: https://firebase.google.com/docs/firestore/query-data/

listen (Дата обращения 20.05.2020). Загл. с экр. Яз. рус.

4 Шахова, И. С. Практикум по курсу «Введение в разработку мобильных

приложений». iOS / И. С. Шахова, И. Р. Залялов. — Казань: Казанский

университет, 2019.

5 Знакомство с Interface Builder. [Электронный ресурс]. — URL: https://

habr.com/ru/post/30553/ (Дата обращения 20.05.2020). Загл. с экр. Яз.

рус.

6 Особенность Segue в Swift [Электронный ресурс]. — URL: http:

//bzhizn3.beget.tech/osobennost-segue-v-swift/ (Дата обращения

21.05.2020). Загл. с экр. Яз. рус.

7 iOS Storyboards: анализ плюсов и минусов. [Электронный ресурс]. —

URL: https://habr.com/ru/company/mobileup/blog/456086/ (Дата

обращения 23.05.2020). Загл. с экр. Яз. рус.

8 Проектирование с помощью сторибордов. [Электронный ресурс]. —

URL: https://habr.com/ru/post/152375/ (Дата обращения 20.05.2020).

Загл. с экр. Яз. рус.

9 Cloud Firestore — это просто. [Электронный ресурс]. — URL: https://habr.

com/ru/post/447640/ (Дата обращения 21.05.2020). Загл. с экр. Яз. рус.

16

https://firebase.google.com/docs/firestore?authuser=0
https://firebase.google.com/docs/firestore?authuser=0
https://ua-blog.com/\T2A\cyrch \T2A\cyrt \T2A\cyro -\T2A\cyrt \T2A\cyra \T2A\cyrk \T2A\cyro \T2A\cyre -cloud-firestore/
https://ua-blog.com/\T2A\cyrch \T2A\cyrt \T2A\cyro -\T2A\cyrt \T2A\cyra \T2A\cyrk \T2A\cyro \T2A\cyre -cloud-firestore/
https://ua-blog.com/\T2A\cyrch \T2A\cyrt \T2A\cyro -\T2A\cyrt \T2A\cyra \T2A\cyrk \T2A\cyro \T2A\cyre -cloud-firestore/
https://firebase.google.com/docs/firestore/query-data/listen
https://firebase.google.com/docs/firestore/query-data/listen
https://habr.com/ru/post/30553/
https://habr.com/ru/post/30553/
http://bzhizn3.beget.tech/osobennost-segue-v-swift/
http://bzhizn3.beget.tech/osobennost-segue-v-swift/
https://habr.com/ru/company/mobileup/blog/456086/
https://habr.com/ru/post/152375/
https://habr.com/ru/post/447640/
https://habr.com/ru/post/447640/

	ВВЕДЕНИЕ
	Описание используемых средств и технологий
	Firebase
	Interface Builder

	Разработка мобильного приложения
	Приложение с точки зрения программиста
	Database
	UserProfileViewController
	EditProfileViewController
	DialogsViewController
	Dialogs
	ChatViewController
	MapViewController
	ActionListScreen
	Структура базы данных приложения

	Взаимодействие с приложением

	ЗАКЛЮЧЕНИЕ
	СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

