
МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение

высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ

ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ИМЕНИ Н. Г. ЧЕРНЫШЕВСКОГО»

Кафедра математической кибернетики и компьютерных наук

СРАВНИТЕЛЬНЫЙ АНАЛИЗ ПАРАЛЛЕЛЬНЫХ АЛГОРИТМОВ

РАСКРАСКИ ГРАФОВ

БАКАЛАВРСКАЯ РАБОТА

студента 4 курса 411 группы

направления 02.03.02 — Фундаментальная информатика и информационные

технологии

факультета КНиИТ

Ионова Кирилла Игоревича

Научный руководитель

доцент, к. ф.-м. н. А. С. Иванова

Заведующий кафедрой

к. ф.-м. н. А. С. Иванов

Саратов 2020

СОДЕРЖАНИЕ

ВВЕДЕНИЕ . 3

1 Исследование параллельных алгоритмов раскраски графа 5

2 Программная реализация параллельных алгоритмов по раскраске графа12

ЗАКЛЮЧЕНИЕ . 16

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ . 17

ВВЕДЕНИЕ

Актуальность темы исследования. Задача по раскраске графов являет-

ся достаточно распространенной, у нее существует ряд применений.

Так, ее решением приходится заниматься при составлении расписаний.

Имеется некоторое количество типов работ и временных промежутков. Тре-

буется распределить работу во времени таком образом, чтобы в один момент

времени выполнялись только те работы, у которых нет общих ресурсов.

Разработчики компиляторов учитывают алгоритмы по раскраске графа

при распределении регистров. Как правило, компилируемая программа рас-

полагает достаточно большим числом переменных, тогда как у процессора

ограниченное и малое количество регистров. Требуется хранить в регистрах

процессора такие переменные, к которым происходит больше всего обраще-

ний.

Производители процессоров решают сходные задачи, стараясь добиться

параллелизма на уровне команд на аппаратном уровне. Программа состоит из

потока инструкций, призванного выполняться параллельно. Процессору пред-

стоит определить, результаты каких инструкций не зависят друг от друга и

могут выполняться параллельно.

Раскраска графов применяется при передаче скрытых сообщений, напри-

мер, когда создателю сообщения требуется закодировать некоторую секретную

информацию. Оригинальное сообщение представляется в виде графа, в него

закладывается секретная информация, на выходе получается граф, защищен-

ный цифровым знаком. О наличии скрытого послания в сообщении можно

догадаться, сравнив хроматическое число у графов, построенных на данных

исходного и полученного сообщения.

Все вышеперечисленное стало причиной появления работы по анализу

алгоритмов по раскраске графа.

Цель исследования. Анализ алгоритмов по определению хроматиче-

ского числа графа, сравнение быстродействия их параллельных вариантов в

многоядерной системе.

Задачи работы:

— Ознакомление с теорией графов;

— Изучение псевдокода алгоритмов по определению хроматического числа;

— Анализ времени работы алгоритмов;

3

— Умение генерировать классы небольших графов (от 1 до 10 вершин);

— Кодирование алгоритмов с использованием возможностей Java.

Научная новизна. Параллельные алгоритмы, как правило, сравнивают-

ся на кластерах с большим количеством ядер. В данной работе исследуется

быстродействие алгоритмов на домашних процессорах, возможности которых

значительно выросли за последнее десятилетие. Также в данной работе раз-

бираются проблемы параллелизма и предлагаются их решения.

Практическая значимость работы заключается в формировании карти-

ны касательно возможностей современных процессоров и их быстродействия

на примере параллельных алгоритмов по правильной раскраске графов.

Основное содержание исследования. Выпускная квалификационная ра-

бота состоит из введения, одной теоретической и одной практической главы,

заключения, списка использованных источников и приложений.

4

1 Исследование параллельных алгоритмов раскраски графа

Первая глава содержит теоретические данные по графам, в ней приво-

дится псевдокод алгоритмов, анализируется их работа на классах небольших

графов, рассматриваются проблемы параллелизации алгоритмов.

Графом представляет собой совокупность двух множеств: вершин и ре-

бер. Вершины называются смежными, если они соединены ребрами. Раскраска

графа — это процесс присвоения всем вершинам графа некоторого числа или

символа, характеризующего цвет. [1]

Правильная раскраска предполагает, что ни одна из пар смежных вершин

не будет окрашена в один цвет. Алгоритм по поиску хроматического числа

ищет минимальное число цветов, при котором возможна правильная раскраска

графа. [2]

Алгоритмы по раскраске графов начали изучаться в XIX веке. Исследо-

ватели преследовали цель узнать, возможно ли окрасить любую сферическую

карту в четыре цвета. Доказательство проблемы четырех красок стало возмож-

но благодаря вычислительным машинам. [3]

Были попытки определить хроматическое число графа за счет формул.

Так известно, что хроматическое число графа не будет превышать степени

максимальной вершины, к которой прибавили число 1.

d =
1

n

n∑
i=0

di; n = 0, 1...N (1)

d̃ = dn/2 (2)

Также хроматическое число можно посчитать как среднее арифметиче-

ское всех половин степеней вершин в графе (уравнение 2). Оценку можно

улучшить, оставив в выборке только те вершины, чья степень не меньше 2.

С этими условиями уравнение 1 дает ответ, который зачастую оказывается

близок к правильному.

Наивный алгоритм раскраски графа не предполагает никаких эври-

стик.

1 параллельно для n вершин в множестве всех вершин V {

2 S = {множество цветов соседей текущей вершины}

3 покрасить текущую вершину в минимальный цвет, который не содержится в S

5

4 }

Итерируясь по всем вершинам графа, алгоритм окрашивает текущую вершину

в минимальный цвет, который не был присвоен соседям 1. Это повторяется,

пока есть непосещенные вершины. [4] В параллельной версии алгоритма каж-

дый поток работает со своими вершинами.

Независимое множество — такое множество вершин на графе, что ни

одна пара вершин в нем не смежна. Как правило, различные алгоритмы по по-

иску хроматического числа пытаются разбить граф на независимые множества

и окрасить их параллельно.

Алгоритмы различаются лишь способом распределения вершин по неза-

висимым множествам и выбором окраски. Все рассматриваемые графы про-

стые (не содержат петель и кратных ребер) и хранятся в централизованной

системе, т.е. каждому потоку процессора доступна информация о всем графе.

2-distance алгоритм формирует на графе независимые множества вер-

шин, причем в одно множество войдут только те вершины, которые находятся

на расстоянии 2 друг от друга [5]. Каждое независимое множество будет окра-

шено в уникальный цвет.

1 функция dfs(v, D) { // v номер текущей вершины, D независимое множество вершин,

изначально пустое

2 пометить v как посещенную

3 добавить v в D

4 для всех w в множестве непосещенных вершин W {

5 если расстояние между текущей вершиной w и v равно 2, то {

6 добавить текущую вершину w в D

7 запустить dfs (w, D)

8 }

9 }

10 вернуть D

11 }

В 2-distance алгоритме потокам подается на вход стартовая и конечная вер-

шины, из которых нужно построить независимое множество путем поиска в

глубину — рекурсивного обхода графа, который предполагает продвижение из

начальной вершины вглубь 1, покуда это еще является возможным. [6]

1 для всех i из множества вершин графа {

2 для всех j из множества вершин графа {

3 если вершины i и j смежны, то

6

4 d[i][j] = вес ребра между ними,

5 иначе d[i][j] = некоторое максимальное число

6 }

7 }

8 для всех k из множества вершин графа {

9 для всех i из множества вершин графа {

10 для всех j из множества вершин графа {

11 d[i][j] = min(d[i][j], d[i][k] + d[k][j])

12 }

13 }

14 }

Независимое множество строится по описанному способу, что вершины нахо-

дятся на кратчайшем расстоянии 2 друг от друга. Поэтому до запуска основ-

ного алгоритма на графе необходимо посчитать матрицу кратчайших путей 1.

Это можно сделать алгоритмом Флойда-Уоршелла. [7]

Кратчайшим путем между двумя вершинами является последователь-

ность из минимального количества ребер. Матрица кратчайших путей содер-

жит таковые пути для всех пар вершин.

1 L = {} // ассоциативный массив, где по целочисленным ключам содержатся независимые

множества дистанции 2

2 параллельно для вершин v в множестве всех вершин V {

3 color = 0

4 если v не была посещена, то {

5 D = {}

6 L[color++] = dfs (v, D)

7 }

8 }

9 для всех key, set из множества L {

10 покрасить все вершины в set цветом key

11 }

В конечном итоге с учетом описанных функция алгоритм 2-distance выглядит

так, как описано в листинге 1.

Алгоритм Джонса-Плассманна предполагает присвоение всем верши-

нам графа некоторого случайного уникального веса. [8] На текущем шаге

обрабатываемая вершина исследует еще не покрашенных соседей и, если у

данной вершины максимальный вес, окрашивается в минимально возможный

цвет.

7

1 инициализировать w случайной перестановкой неповторяющихся весов

2 U = V

3 пока U содержит хотя бы 1 элемент {

4 параллельно для вершин v в множестве всех вершин U {

5 I = множество всех вершин в U, которые имеют наибольший вес среди

соседей

6 параллельно для вершин s в множестве I {

7 S = {множество цветов соседей текущей вершины}

8 покрасить текущую вершину в минимальный цвет, который

несодержится в S

9 }

10 }

11 вычесть из множества U множество I

12 }

Процесс продолжается, пока есть неокрашенные вершины 1. Потоки получают

на вход номер начальной и конечной вершины, которые надо окрасить, и

итерируются по заданному промежутку.

Largest-Degree-First алгоритм предполагает формирование независи-

мого множества на основании весов и степеней вершин. Каждой вершине

устанавливается в соответствие некий случайный вес. [9] Также определяют-

ся степени.

1 функция LDF(w[]) {

2 D = множество вершин, отсортированное в порядке убывания степеней вершин

3 пока U содержит хотя бы 1 элемент {

4 параллельно для вершин v в множестве D {

5 I = {}

6 добавить вершину v в множество I, если

7 у нее наибольшая степень среди соседей,

8 либо у нее максимальная степень и наибольший вес среди

соседей с такой же степенью

9 параллельно для вершин w в множестве I {

10 S = {множество цветов соседей текущей вершины}

11 покрасить текущую вершину в минимальный цвет,

который не содержится в S

12 }

13 }

14 вычесть из множества D множество I

15 }

16 }

17 инициализировать w[] случайной перестановкой неповторяющихся весов

8

18 LDF(w)

Потокам на вход подаются интервалы номеров вершин, которые надо обра-

ботать. На текущем шаге обрабатываемая вершина красится в цвет, если у

нее максимальная степень среди соседей, либо же есть соседи с такой же

степенью, но у текущей вершины наибольший вес 1.

Smallest-Degree-Last алгоритм более комплексно подходит к распреде-

лению весов между вершинами. Вершины упорядочиваются по возрастанию

степеней, текущий вес устанавливается минимальным. На очередном шаге

всем вершинам минимальной степени назначается текущий вес, после чего

рассмотренные вершины удаляются из графа, степени оставшихся пересчиты-

ваются, а вес увеличивается. [10]

1 функция SDL {

2 инициализировать w[] нулями

3 k = 1

4 i = 1

5 U = V

6 пока U содержит хотя бы 1 элемент {

7 пока существуют вершины v в U со степенью не менее k выполнять

параллельно {

8 S = {множество вершин v со степенью не менее k}

9 для всех вершин v в S {

10 w(v) = i // назначить i весом вершины v

11 }

12 вычесть из множества U множество S

13 i++

14 }

15 k++;

16 }

17 вернуть w

18 }

19 LDF(SDL())

Процесс продолжается, пока есть непосещенные вершины. Далее вершины

сортируются по убыванию своих изначальных степеней, также для каждой из

них посчитан вес. После этого можно запускать LDF или алгоритм Джонса-

Плассманна, порядок окраски будет определяться весом вершин, посчитанным

на прошлом шаге 1.

1 errorVertices = {} // список ошибочных вершин

9

2 параллельно для n вершин в графе {

3 для всех соседей текущей вершины {

4 если цвет соседа совпадает с цветом текущей вершины, добавить вершину

5 минимального номера из данной пары в список ошибочных вершин

6 }

7 }

8 для всех вершин в errorVertices {

9 S = {множество цветов соседей текущей вершины}

10 покрасить текущую вершину в минимальный цвет, который не содержится в S

11 }

У рассмотренных параллельных алгоритмов могут возникнуть ошибки ввиду

того, что две соседние вершины могут быть окрашены двумя потоками в

один момент времени. Поэтому после работы алгоритмов необходимо еще раз

пройти по графу, определить все смежные вершины, окрашенные в один цвет,

и добавить их в список на перекраску 1.

Также при разработке алгоритмов были учтены проблемы синхрониза-

ции, все использованные структуры данных поддерживают неблокирующее

чтение и сегментированную запись.

10

Рисунок 1 – Наивный алгоритм раскраски вершин

Было измерено среднее время работы рассмотренных 5 алгоритмов на

классах 4 − 10 вершинных графов (рисунок 1). Наивный алгоритм оказал-

ся значительно медленнее остальных участников теста, SDL также оказался

неоптимальным. Алгоритмы 2-distance, Джонса-Плассманна и LDF работают

оптимально, поэтому при выборе параллельного алгоритма можно пользовать-

ся любым из них.

Также сравнению подверглись все алгоритмы на четырех различных про-

цессорах Intel. Алгоритмы показали свою масштабируемость в зависимости

от числа имеющихся потоков.

11

2 Программная реализация параллельных алгоритмов по

раскраске графа

Вторая глава описывает процесс генерации графов для программы. В

ней рассматривается потокобезопасная реализация алгоритмов на Java.

Список смежности — это способ представления графа, в котором для

каждой вершины перечисляются номера смежных с ней вершин.

Для генерации графов используется программа geng из пакета nauty

and traces [11], которой на вход подается число вершин в классе графа. Все

сущности представлены в сжатом формате [12], который переводится в список

смежности при помощи программы showg из того же пакета.

Реализованная программа представлена в формате jar-архива. В архив

вшиты настройки по умолчанию, однако поддерживаются внешние параметры

конфигурации, которые должны быть описаны в файле application.properties.

Также можно переопределить детали логгирования в logj2.xml [13].

Программа сканирует входную директорию на предмет файлов с графа-

ми, при этом рассматриваются только графы с числом вершин, попадающим

в заданный интервал в конфигурационном файле.

Графы обрабатываются на диапазоне алгоритмов, начальный и финаль-

ный номер которых заданы в конфигурационном файле. Установлено следую-

щее соответствие:

— 1 — наивный параллельный алгоритм;

— 2 — 2-distance алгоритм;

— 3 — алгоритм Джонса-Плассманна;

— 4 — LDF-алгоритм;

— 5 — SDL-алгоритм.

Результатом работы программы являются выходные файлы в директори-

ях details, short и summary, находящихся в папке results. В details содер-

жится максимально подробная информация, в short время работы алгоритмов

и только оно, в summary метрики по среднему и общему времени работы.

Выходные файлы в своем имени содержат номер алгоритма и число

вершин графа. Если конфигурационный файл содержит какие-то ошибки или

не были найдены заданные описания графов, будет выброшено исключение.

На пользователя возлагается ответственность по генерированию графов

с помощью вышеуказанных инструментов, программа не проверяет входные

12

файлы на корректность. Если какой-то из графов содержит ошибку в описа-

нии, программа завершит свою работу, и данные о всех прошлых успешно

обработанных графах будут записаны в выходные директории.

В конкретный момент времени программа хранит в памяти и обрабаты-

вает только один граф. На нем прогоняются все алгоритмы заданное число раз.

Время работы алгоритма определяется как среднее арифметическое от общего

времени работы всех запусков.

Входной точку в программу служит класс JavaLauncher, в нем создает-

ся экземпляр класса ApplicationProperties, где парсятся все параметры кон-

фигурации. Приоритет отдается внешнему конфигурационному файлу, если

его нет, считываются опции из внутреннего.

Далее управление главным потоком передается классуAlgorithmController.

Тут считываются входные данные из заданного диапазона и прогоняются на

конкретных алгоритмах, после чего записываются в выходные файлы, чье имя

является комбинацией первых двух параметров.

Рисунок 2 – Формат выходного файла

Графы считываются в формате списка смежности. В выходном файле

для каждой вершины будет записан ее цвет, при этом раскраска будет являться

правильной. Также для каждого графа записываются его хроматическое число

и время работы алгоритма на данном графе (рисунок 2).

После создания всех сущностей и выбора запускаемого алгоритмаAlgorithm

Controller передает управление абстрактному классу AbstractAlgorithm. Здесь

вычисляется число используемых в вычислении потоков (для параллельного

алгоритма максимальное число потоков процессора, для последовательного 1).

Также вычисляется «чанк» – количество вершин, которое будет пере-

дано на обработку каждому потоку. Каждый алгоритм запускается на графе

13

заданное число раз, после чего записывается среднее арифметическое времени

работы алгоритма.

AbstractAlgorithm содержит метод для коррекции ошибок, вызываемый

из наследников класса. Методу передается на вход множество вершин, которые

нужно перекрасить. Цвет выбирается минимальный доступный — с учетом

раскрасок соседей.

От AbstractAlgorithm наследуются пять классов, в каждом из которых

реализован свой алгоритм раскраски. Они переопределяют или используют

уже готовую логику классов Colorer и Recolorer, в которых описаны сущно-

сти, необходимые для раскраски и перекраски вершин.

Colorer и Recolorer — это задачи, которые будут переданы фиксиро-

ванному пулу исполнителей, определенному в каждом алгоритме. Это высо-

коуровневое средство организации потоков, которому достаточно передать на

вход задачи и ожидать результата.

Фиксированный пул исполнителей самостоятельно контролирует цикл

работы потоков, в основе лежит идея переиспользования, т.е. вместо инициа-

лизации новых потоков свежие задачи передаются старым потокам, завершив-

шим свою работу.

В реализации программы фиксированному пулу передаются задачи по

окраске и перекраске графа. Далее, в зависимости от реализации алгоритма,

исполнители либо самостоятельно записывает значение в граф и ничего не воз-

вращает (тип Runnable), либо от него ожидается какое-то значение в будущем

(Future-данные [14] для типа Callable).

В первом алгоритме на вход каждому исполнителю подается диапазон из

начальной и конечной вершин (длиной в «чанк»). Это позволяет гарантировать,

что каждый поток получит равное число вершин на обработку, кроме может

быть последнего.

Каждый исполнитель красит текущую вершину в минимальный цвет,

по окончанию обработки всего графа производится многопоточный анализ на

ошибочно покрашенные вершины.

В 2-distance алгоритме на графе считается матрица кратчайших рассто-

яний, после чего формируются независимые множества вершин расстояния 2

и окрашиваются в уникальные цвета.

В алгоритме Джонса-Плассманна вершинам изначально присваиваются

14

случайные веса (перестановка их индексов). Далее начинается многопоточная

обработка графа.

Текущая вершина красится в минимальный доступный цвет, если сре-

ди неокрашенных смежных вершин у нее самый большой номер. Обработка

продолжается, пока есть неокрашенные вершины.

LDF-алгоритм в текущий момент окрашивает вершину в наименьший

доступный цвет, если: у нее либо наибольшая степень среди всех смежных

неокрашенных вершин, либо наибольший случайный вес среди всех вершин

той же степени.

SDL-алгоритм распределяет веса по вершинам таким образом, что вер-

шины наименьшей степени получат минимальный вес. Далее запускается ос-

новной алгоритм, шаги которого совпадают с описанными в LDF.

15

ЗАКЛЮЧЕНИЕ

Рассмотрен ряд параллельных алгоритмов, занимающихся поиском ми-

нимальной вершинной раскраски произвольных графов. В результате этого:

— Проведено знакомство с теорией графов;

— Изучен псевдокод алгоритмов по определению хроматического числа;

— Проанализировано время работы алгоритмов;

— Сгенерированы полные классы графов с небольшим числом вершин;

— Рассмотренные алгоритмы реализованы на высокоуровневом языке про-

граммирования Java.

Был рассмотрен тот факт, что скорость работы алгоритмов зависит от

числа потоков процессора, которые доступны программе. Поддерживаются

вычисления на графах с произвольным числом вершин. Реализованный код

пригоден для использования в централизованных системах, возможна инте-

грация в него новых видов алгоритмов.

16

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1 Harary, F. Graph Theory / F. Harary. — Boston: Addison-Wesley, 1969.

2 Molloy, M. S. Graph colouring and the probabilistic method / M. S. Molloy,

B. Reed. — Berlin: Springer, 2002.

3 Appel, K. Every planar map is four colorable. part i: Discharging / K. Appel,

W. Haken // Illinois J. Math. — 1977. — Vol. 21, no. 3. — Pp. 429–490.

4 Normann, P. Parallel graph coloring: Parallel graph coloring on multi-core

cpus / P. Normann // Uppsala University. — 2014. — Vol. 1. — Pp. 1–45.

5 Bozdag, D. A parallel distance-2 graph colouring algorithm for distributed

memory computers / D. Bozdag, U. Catalyurek, A. H. Gebremedhin,

F. Manne, E. G. Boman, F. Ozguner // High Performance Computing and

Communications. — 2005. — Vol. 1. — Pp. 796–806.

6 Even, S. Graph algorithms / S. Even. — 2011. — Vol. 1. — Pp. 46–48.

7 Floyd, R. W. Algorithm 97: Shortest path / R. W. Floyd // Communications of

the ACM. — 1962. — Vol. 5, no. 6. — P. 345.

8 Jones, M. T. A parallel graph coloring heuristic / M. T. Jones, P. E. Plassmann //

SIAM Journal of Scientic Computing 14. — 1993. — Vol. 1. — P. 654.

9 Welsh, D. J. A. An upper bound for the chromatic number of agraph and its

application to timetabling problems / D. J. A. Welsh, M. B. Powell // The

Computer Journal. — 1967. — Vol. 10. — Pp. 85–86.

10 Matula, D. W. Graph coloring algorithms / D. W. Matula, G. Marble, J. D.

Isaacson // Computers and Operations Research. — 1972. — Vol. 13. — Pp. 27–

32.

11 McKay, B. D. Practical graph isomorphism, {II} / B. D. McKay, A. Piperno //

Journal of Symbolic Computation. — 2014. — Vol. 60, no. 0. — Pp. 94 – 112.

12 Description of graph6, sparse6 and digraph6 encodings [Электронный ре-

сурс]. — URL: http://users.cecs.anu.edu.au/~bdm/data/formats.txt

(Дата обращения 29.05.2020). Загл. с экр. Яз. англ.

13 Log4j – Configuring Log4j 2 - Apache Logging Services [Электрон-

ный ресурс]. — URL: https://logging.apache.org/log4j/2.x/manual/

configuration.html (Дата обращения 29.05.2020). Загл. с экр. Яз. англ.

17

http://users.cecs.anu.edu.au/~bdm/data/formats.txt
https://logging.apache.org/log4j/2.x/manual/configuration.html
https://logging.apache.org/log4j/2.x/manual/configuration.html

14 Future (Java Platform SE 7) - Oracle Docs [Электронный ре-

сурс]. — URL: https://docs.oracle.com/javase/7/docs/api/java/

util/concurrent/Future.html (Дата обращения 29.05.2020). Загл. с экр.

Яз. англ.

18

https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/Future.html
https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/Future.html

	ВВЕДЕНИЕ
	Исследование параллельных алгоритмов раскраски графа
	Программная реализация параллельных алгоритмов по раскраске графа
	ЗАКЛЮЧЕНИЕ
	СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

