
МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение

высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ

ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ИМЕНИ Н. Г. ЧЕРНЫШЕВСКОГО»

Кафедра математической кибернетики и компьютерных наук

ГЕНЕТИЧЕСКИЙ АЛГОРИТМ ДЛЯ ПОИСКА ЦЕНТРАЛЬНЫХ

ВЕРШИН В ГРАФАХ

АВТОРЕФЕРАТ БАКАЛАВРСКОЙ РАБОТЫ

студента 4 курса 411 группы

направления 02.03.02 — Фундаментальная информатика и информационные

технологии

факультета КНиИТ

Власова Андрея Александровича

Научный руководитель

доцент, к. ф.-м. н. С. В. Миронов

Заведующий кафедрой

к. ф.-м. н., доцент А. С. Иванов

Саратов 2020

СОДЕРЖАНИЕ

ВВЕДЕНИЕ . 3

1 Описание задачи и алгоритмы для ее решения . 4

2 Разработка генетического алгоритма и его исследование 5

2.1 Исследование алгоритма . 5

2.2 Результаты вычислительных экспериментов . 6

2.3 Исследование параметров генетического алгоритма 7

3 Описание приложения, созданного для работы с генетическим алго-

ритмом . 8

3.1 Описание технологий и архитектуры приложения 8

3.2 Структура базы данных . 8

3.3 Уровень доступа к данным. 8

3.4 Уровень бизнес-логики . 9

3.5 Уровень представления . 10

3.5.1 Контроллеры . 10

3.5.2 Модели данных и валидация . 11

3.5.3 Аутентификация . 11

3.6 Хеширование паролей . 12

3.7 Внедрение зависимостей . 12

ЗАКЛЮЧЕНИЕ . 14

ВВЕДЕНИЕ

В современных компьютерных науках одно из центральных мест занима-

ет математическая модель графа. Графовая модель позволяет описывать целый

ряд систем и явлений, которые встречаются в различных предметных областях.

Изучение структуры того или иного графа, или же выявление его свойств и

особенностей может приносить невероятную практическую пользу. В связи с

этим работы, посвященные этой теме, вызывают наибольший интерес как со

стороны исследователей теоретиков, так и со стороны практиков.

Одной из важных характеристик любого графа можно назвать радиус

графа и расположение его центральных вершин. Получив данные парамет-

ры, можно судить об общей структуре графа или же о его особенностях.

Современные графовые модели могут насчитывать десятки сотен тысяч вер-

шин, поэтому для эффективного решения задач зачастую бывает недостаточно

использовать классические алгоритмы, а необходимо реализовать некоторый

эвристический подход, одним из которых является генетический алгоритм.

Основной целью работы было следующее — разработать и исследовать

генетический алгоритм, способный решать задачу поиска центральных вер-

шин. Для достижения этой цели были поставлены следующие задачи:

— реализовать идеи генетических алгоритмов с учетом рассматриваемой

задачи,

— реализовать существующие алгоритмы для поиска центральных вершин,

— создать программное приложение, позволяющее проводить запуски ал-

горитма с различными параметрами,

— исследовать параметры алгоритма и выявить его слабые и сильные сто-

роны.

3

1 Описание задачи и алгоритмы для ее решения

Для описания задачи сначала необходимо дать формальное определение

понятию граф. Граф — это упорядоченная пара множеств (V,E), где V — мно-

жество вершин графа, а E — множество упорядоченных и неупорядоченных

пар вершин — дуг или ребер. В случае, когда вершины в парах упорядочены,

говорят, что граф является ориентированным, иначе — неориентированным.

В случает неориентированного графа также используется понятие связ-

ности графа — граф является связным, если между любой парой вершин су-

ществует по крайней мере один путь. Кроме этого графы можно разделить

на взвешенные или невзвешенные — в случае взвешенного графа каждое реб-

ро имеет некоторый вес — положительное или отрицательное число, в случае

невзвешенного графа каждое ребро имеет вес равный единице.

В данной работе рассматривается задача поиска центральных вершин в

графах. Для начала можно дать определение эксцентриситета вершины. Экс-

центриситетом вершины называется максимальное из расстояний от этой вер-

шины до всех остальных вершин в графе. С использованием этого определения

можно сказать, что центральными вершинами в графе называются вершины с

минимальным значением эксцентриситета, при чем само значение этого ми-

нимального эксцентриситета представляет собой радиус графа.

Радиус графа и эксцентриситет вершины являются одними из базовых

параметров, которые наиболее часто встречаются в прикладных задачах, ли-

бо необходимы при исследовании свойств графа. Этим объясняется довольно

большое количество работ, в которых изучается данная задача. Для решения

данной задачи разработаны различные подходы. С одной стороны существуют

точные алгоритмы, которые позволяют находить центральные вершины, ис-

пользуя различные эвристики или способы представления решения, с другой

стороны существуют стохастические подходы для решения все той же задачи.

К последним можно отнести генетические алгоритмы, которые модели-

руют эволюционное развитие популяции. Данное развитие реализуется за счет

процесса мутации, скрещивания и естественного отбора. Работа алгоритма за-

ключается в итерационном применении этих трех составляющих к популяции,

которая описывает набор возможных решений. При этом, так как данные алго-

ритмы являются вероятностными, то не гарантируется, что найденное решение

будет всегда верным.

4

2 Разработка генетического алгоритма и его исследование

Предлагаемый в данной работе генетический алгоритм реализует сле-

дующую идею: пусть существует некоторое абстрактное или реальное изоб-

ражение графа, причем в центре этого изображения находятся центральные

вершины графа. Тогда, если популяция генетического алгоритма представляет

собой набор вершин, то этот набор может быть представлен в виде некоторо-

го «шара», внутри которого находится центральные вершины графа. Из этой

идеи следует, что для нахождения центральных вершин необходимо, чтобы

этот абстрактный шар сжимался к центру. Именно этот смысл заложен в рабо-

ту оператора скрещивания. В добавок к этому алгоритм должен сжимать эту

«сферу» к глобальному центру, не сбиваясь в локальные оптимальные значе-

ние, за это отвечает оператор мутации. Естественный отбор соответственно

занимается выбором вершин с оптимальными эксцентриситетами.

В качестве начальной популяции генерируется случайный набор уни-

кальных вершин в количестве N , причем вероятность попадания в начальную

популяцию одинакова для всех вершин. Естественный отбор занимается вы-

бором оптимальных вершин для продолжения работы алгоритма. Для каждой

вершины находится ее эксцентриситет при помощи обхода в ширину, после че-

го методом колеса рулетки, при этом приоритет отдается вершинам с меньшим

эксцентриситетом. Скрещивание реализовано следующим образом: в качестве

родителей выбираются две вершины из популяции, после чего между ними

находится кротчайший путь, после чего из этого пути выбирается одна вер-

шина в качестве потомка. Именно такая реализация данного этапа позволяет

алгоритму сходиться к центральным вершинам, причем на работу этого эта-

па влияет параметр pc. В процессе работы этапа мутации перебираются все

вершины в популяции и для каждой вершины находятся ее соседи — вершины

смежные с ней, после чего с вероятностью pm вершина заменяется на одного

из своих соседей.

2.1 Исследование алгоритма

В качестве языка программирования для исследования алгоритма был

выбран язык программирования C++. Кроме этого в качестве среды разработ-

ки, в которой производилась реализация алгоритма, была выбрана

Visual Studio 2017, а вычислительная машина, на которой были выполнены

5

все испытания обладает оперативной памятью с размером 6.0 GB и процессо-

ром AMD A8-7410 с частотой 2.20 GHz.

Кроме этого для запусков тестов алгоритма необходимы наборы графов

с разными свойствами. Для создания графов использовалась Python библио-

тека NetworkX, которая предоставляет возможности для генерации данных на

основе хорошо известных моделей случайных графов: графа Эрдеша-Реньи,

графа Барабаши-Альберт и геометрического случайного графа.

2.2 Результаты вычислительных экспериментов

Для выявления сильных и слабых сторон предложенного алгоритма его

сравнение проводилось с рядом точных алгоритмов, а также с алгоритмом

«N4N». Для модели Эрдеша-Реньи в качестве параметра p было выбрано зна-

чение 5%, для модели Барабаши-Альберт m = 2, а для геометрического слу-

чайного графа r = 0.1.

Для сравнения по временным результатам были реализованы тривиаль-

ный алгоритм и алгоритм с улучшенной асимптотикой. Эти алгоритмы и гене-

тический алгоритм описанный в данной работе запускались на трех моделях

случайных графов, с количеством вершин 500, 1000, 1500, 2000, 2500, 5000.

Исходя из практических экспериментов в качестве размера популяции выбра-

но значение 50, для оператора скрещивания 0.7, для оператора мутации 0.1,

кроме этого число итераций ограничено числом 20. Из полученных результа-

тов был сделан вывод, что созданный генетический алгоритм дает выигрыш

по времени в несколько раз по сравнению с точными алгоритмами.

Также так как эвристический алгоритм не гарантирует получение точ-

ного ответа, а допускает некий процент ошибки, то для изучения точности

алгоритма были проведены тесты позволяющие выявить процент неправиль-

ных ответов. Для этого алгоритм запускался на все тех же графах, при этом

так как размерности графа, позволяют за приемлемые временные затраты с

помощью точного алгоритма найти центральные вершины, то зная эту ин-

формацию можно говорить о проценте неправильных ответов. Для сравнения

брался алгоритм «N4N», после чего оба алгоритма запускались 100 раз, что

позволило подсчитать процент ошибки.

Из полученных результатов стало ясно, что созданный алгоритм не усту-

пает одному из существующих эвристических алгоритмов.

6

2.3 Исследование параметров генетического алгоритма

В описанных ранее результатах в качестве значений параметров гене-

тического алгоритма были выбраны значения N = 50, pc = 0.7 и pm = 0.1.

Однако эти значения выбирались в качестве тестовых для того, чтобы прове-

рить жизнеспособность идей, заложенных в алгоритм. При этом эти парамет-

ры ключевым образом влияют как на точность алгоритма, так и на время его

выполнения. В связи с этим был также проведен еще ряд экспериментов, в ко-

торых исследовались эти параметры. Для начала были произведены запуски,

в которых перебирались значения для pm и pc от 0 до 1. Для каждого значения

этих параметров измерялось время работы алгоритма и его процент ошибок.

Из этих результатов экспериментов было видно, что время работы алго-

ритма растет по мере увеличения как параметра pm, так и параметра pc. Вместе

с тем стало ясно, что и процент неверных ответов падает по мере увеличения

тех же параметров. Очевидно, что необходимо найти некоторые оптимальные

значения для того, чтобы процент неверных ответов был невелик и одновре-

менно с этим необходимо, чтобы время работы было минимальным. Для того

чтобы соединить воедино два этих фактора была введена функция:

F (pm, pc) = α time(pm, pc) + β error(pm, pc), (1)

которая учитывает время работы и процент ошибок, причем параметр α от-

вечает за уровень значимости временных затрат, а параметр β отвечает за

значимость процента ошибок. Эта функция позволила выявить оптимальные

значения для параметров pm, pc и N . И эксперименты с ее использовани-

ем показали, что данные параметры должны выбираться для каждого графа

индивидуально, но в целом прослеживается четкая тенденция к тому, что наи-

лучшим образом алгоритм работает с параметрами pm и pc в диапазоне 0.4-0.6

и для параметра N в диапазоне 20-30.

7

3 Описание приложения, созданного для работы с генетическим

алгоритмом

Кроме этого для работы с генетическим алгоритмом создано отдельное

приложение. Приложение представляет собой веб-сайт, через который предо-

ставляется возможность для работы с генетическим алгоритмом. С одной сто-

роны у пользователя есть доступ к исследованию алгоритма и его запуску с

различными параметрами, а с другой пользователь может заняться исследова-

нием собственного графа и запустить алгоритм на нем.

Пользователю предоставляется возможность для работы с несколькими

формами, на которых он может либо загружать граф из файла для поиска его

центральных вершин либо исследовать параметры алгоритма на уже сохра-

ненных графах, которые лежат в базе данных.

3.1 Описание технологий и архитектуры приложения

В качестве языка программирования для создания проекта был выбран

объектно-ориентированный язык C#. Вместе с тем, для создания клиент-сер-

верного приложения был использован фреймворк ASP.NET MVC 5, который

позволяет создавать веб-приложения с использованием архитектуры MVC. Кро-

ме этого в качестве системы объектно-реляционного отображения использует-

ся технология Entity Framework 6. При этом приложение разделено на три

слоя абстракции — уровень доступа к данным, уровень бизнес-логики и уро-

вень визуального представления.

3.2 Структура базы данных

Для создания базы данных используется технология Entity Framework 6,

который позволяет использовать подход Code-first, согласно которому были

созданы классы Graph, GraphInfo, Edge, User, описывающие модели данных:

После чего фреймворк на основании созданных моделей создал струк-

туру базы данных и связи между таблицами.

3.3 Уровень доступа к данным

Для гибкой и стандартизированной работы с базой данных был создан

ряд интерфейсов, в которые были вынесены основные методы для доступа к

данным и их изменениям. Классы, реализующие эти интерфейсы представ-

ляют собой уровень доступа к данным, при этом использование интерфейсов

8

позволяет с легкостью изменять реализацию этих классов, а также упрощает

процесс тестирования.

Вместе с тем для использования технологии Entity Framework созда-

ны классы GraphContext и UserContext, которые наследуются от класса

System.Data.Entity.DbContext, что позволяет получить возможность для

легкого доступа к базе данных без написания SQL запросов. Классы

GraphContext и UserContext содержат в себе поля типа DbSet<Graph> и

DbSet<User>, через которые происходит добавление, чтение или изменение

данных в базе данных. Кроме этого в этих классах описан статический кон-

структор, внутри которого указан способ начальной инициализации базы дан-

ных, за счет классов UserContextInitializer и GraphContextInitializer.

Эти классы наследуются от класса CreateDatabaseIfNotExists, что позволя-

ет фреймворку выполнить начальное заполнение данными, если база данных

еще не существует, за счет кода, который описан в переопределенном методе

Seed. Внутри метода, описанного в классе GraphContextInitializer, проис-

ходит чтение нескольких созданных графов из текстовых файлов, в методе с

этим же именем в классе UserContextInitializer добавляется пользователь

с логином admin и паролем admin.

3.4 Уровень бизнес-логики

Уровень бизнес-логики представляет собой похожую структуру, как и

уровень доступа данных — так же созданы ряд интерфейсов и классы, ко-

торые их реализуют. При этом многие из этих интерфейсов похожи на те,

которые описаны в уровне доступа к данным, однако именно на этом уровне

происходит запуск генетического алгоритма с различными параметрами и ана-

лиз загруженных графов. Классы GraphBL и UserBL, реализуют интерфейсы

IGraphBL и IUserBL. Они содержат ссылки на объекты, реализующие интер-

фейсы IGraphDao и IUserDao. При добавлении нового пользователя проис-

ходит проверка на существование записи с таким же логином, а кроме этого

происходит хеширование пароля.

При добавлении нового графа в базу данных в классе, который отвечает

за работу с моделью графа, происходит проверка графа на связность и провер-

ка на размеры графа. При неудачном прохождении проверки выбрасывается

исключение, которое отлавливается на уровне представления.

Кроме этого для работы с генетическим алгоритмом создан интерфейс

9

IAlgorithm:

Интерфейс определяет набор методов, в которых будет реализована ло-

гика для работы с генетическим алгоритмом. Вместе с тем класс Algorithm

реализует данный интерфейс и в нем содержится вся логика работы с алгорит-

мом — получение результатов поиска центральных вершин, замеры времени

работы и процента неверно найденных решений.

Результаты измерений возвращаются из методов при помощи классов

FindingVertexResponse и ResearchAlgorithmResponse.

3.5 Уровень представления

Так как проект представляет собой веб-приложение, то уровень, отве-

чающий за пользовательский интерфейс реализован при помощи технологии

ASP .NET MVC 5. В связи с чем весь код этого уровня разделен на:

— контроллеры, которые отвечают на HTTP запросы клиента с помощью

представлений,

— представления, которые написаны с использованием технологии Razor,

позволяющей внедрять серверный C# код,

— модели данных, внутри которых происходит передача данных от клиента

серверу и обратно.

3.5.1 Контроллеры

Для взаимодействия с клиентской частью приложения и обработки поль-

зовательских данных было создано несколько контроллеров: HomeController,

GraphController, LoginController, ResearchController.

Класс HomeController содержит один метод Index, который отвечает на

GET-запрос и возвращает домашнюю страницу.

Класс GraphController включает в себя методы, определяющие URL-

адреса при взаимодействии с которыми клиентской части приложения предо-

ставляется возможность запускать генетический алгоритм для поиска цен-

тральных вершин или добавлять новый граф в базу данных. Класс

ResearchController содержит методы, через которые пользователю предо-

ставляется возможность запускать генетический алгоритм с различными па-

раметрами (pc, pm, N), а также граф на котором будет тестироваться алгоритм.

В классе LoginController определены методы, за счет которых проис-

ходит регистрация и аутентификация пользователей. Пользователь, который

10

вошел в систему получает возможность для добавления новых графов и до-

бавление новых пользователей, залогиненному пользователю предоставляются

права администратора.

3.5.2 Модели данных и валидация

Основными классами, с помощью объектов которых происходит переда-

ча данным в контроллеры, AddGraphRequest, CreateUserRequest,

LoginUserRequest, ResearchRequest, при этом результаты вычислений воз-

вращаются из контроллеров в виде представлений, которые представляют со-

бой HTML разметку с внедрением данных, переданных через классы

AlgorithmResultResponse, FindingVertexResponse,

ResearchAlgorithmResponse.

При этом очевидно, что при введенные пользовательские данные должны

удовлетворять некоторым условиям. Для того, чтобы передаваемые данные

можно было проверить из любого участка кода для некоторых свойств были

использованы атрибуты валидации Required, Compare, StringLength:

При таком использовании атрибутов валидации проверить модель на

соответствие выдвинутым требованиям можно при помощи следующего кода:

внутри любого из контроллеров, где ModelState— свойство класса

Controller, которое инкапсулирует состояние модели, переданной в качестве

параметра запроса. В случае неудачного прохождения валидации в свойство

ModelState при помощи метода AddModelError добавляется сообщение об

ошибке, которое затем будет вставлено в HTML разметку. Атрибут Requred

установлен для логина и пароля, вводимого пользователем, что гарантирует

тот факт, что в базу данных не будет помещена запись с пустыми полями. В

добавок к этому у свойства ConfirmPassword установлен атрибут Compare, ко-

торый требует, чтобы свойство, отвечающее за хранение пароля, совпадало со

свойством, отвечающим за хранение повтора пароля. Также используется атри-

бут StringLength, в котором устанавливаются минимальная и максимальная

длина логина и пароля.

3.5.3 Аутентификация

Как уже отмечалось ранее доступ к возможности добавлять графы в ба-

зу данных и добавлять туда же новых пользователей имеют доступ только

пользователи, которые вошли в систему. В связи с этим в качестве техноло-

11

гии аутентификации в созданном приложении используется аутентификация

с помощью форм. При успешном прохождении проверки на принадлежность

пользователю введенного им пароля, при помощи следующей строки кода кли-

ентская часть получает cookie-файлы, которые затем будут присоединяться ко

всем остальным запросам:

Для того, чтобы к определенным методам был доступ только авторизи-

рованным пользователям к каждому методу применяется атрибут Authorize,

который гарантирует проверку на доступность для пользователя этих мето-

дов. При этом для пользователя вошедшего в систему несколько изменя-

ется HTML разметка, что достигается при помощи использования свойства

User.Identity.IsAuthenticated.

3.6 Хеширование паролей

Очевидно, что хранение паролей пользователей в открытом виде пред-

ставляет собой подход нарушающий основные требования к безопасности

приложения. В связи с чем каждый пароль при регистрации пользователя

хешируется и полученный хеш сохраняется в базе данных. Хеширование па-

ролей происходит в классе Encryption, где определены публичные методы

CreatePassword и CheckPassword.

В конструктор класса передается строка с паролем, «соль» — псевдослу-

чайная последовательность байт, которая используется для повышения крип-

тоустойчивости хеша и параметр, отвечающий за искусственную временную

задержку, которая позволяет избежать попытки грубого перебора. В базу дан-

ных сохраняется полученный хеш и сгенерированная «соль». При проверке

подлинности пароля из базы данных извлекается хеш c «солью», после чего

введенный пароль хешируется с сохраненной «солью» и результат сравнива-

ется с тем, что было сохранено в базе данных.

3.7 Внедрение зависимостей

Ранее описывались независимые уровни, на которые разделено прило-

жение, при этом гибкость и заменяемость каждого из уровней гарантируется

существованием интерфейсов. Каждый из уровней содержит ссылки на объ-

екты, которые реализуют тот или иной интерфейс, при этом эти объекты пере-

даются в качестве параметров в конструкторы. Для того, чтобы гарантировать

тот факт, что во все конструкторы будут переданы одни и те же реализации

12

интерфейсов и избежать дублирования кода в созданном приложении исполь-

зуется IoC-контейнер Ninject, который связывает интерфейсы с объектами,

которые их реализуют и предоставляет их при необходимости. Связывание ин-

терфейсов и реализации происходит в методе класса NinjectRegistrations:

При этом в глобальном файле запуска приложения происходит регистра-

ция этого класса в качестве основного способа разрешения зависимостей.

13

ЗАКЛЮЧЕНИЕ

В рамках работы поставленная цель была достигнута. Для поиска цен-

тральных вершин был предложен генетический алгоритм, а кроме этого со-

зданы программные приложения позволившие его исследовать. Исходя из по-

лученных результатов, можно сказать, что во многом время и качество работы

алгоритма зависит от параметров pm, pc и N , и при правильно подобранных

значениях алгоритм не уступает по своим характеристикам разработанным

ранее алгоритмам. Кроме этого создано веб-приложение для работы с генети-

ческим алгоритмом.

Результаты исследований были представлены в статье «Ball-Shrinking

Genetic Search Algorithm for Finding Central Vertices in Graphs», на Студен-

ческих научных конференциях факультета КНиИТ СГУ в 2019 и 2020 году, а

также на VIII Международной молодежной научно-практической конференции

«Математическое и компьютерное моделирование в экономике, страховании и

управлении рисками» на базе СГУ.

14

	ВВЕДЕНИЕ
	Описание задачи и алгоритмы для ее решения
	Разработка генетического алгоритма и его исследование
	Исследование алгоритма
	Результаты вычислительных экспериментов
	Исследование параметров генетического алгоритма

	Описание приложения, созданного для работы с генетическим алгоритмом
	Описание технологий и архитектуры приложения
	Структура базы данных
	Уровень доступа к данным
	Уровень бизнес-логики
	Уровень представления
	Контроллеры
	Модели данных и валидация
	Аутентификация

	Хеширование паролей
	Внедрение зависимостей

	ЗАКЛЮЧЕНИЕ

