
МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение

высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ

ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ИМЕНИ Н. Г. ЧЕРНЫШЕВСКОГО»

Кафедра математической кибернетики и компьютерных наук

TIGSTYLE: ДЕКЛАРАТИВНЫЙ СТИЛИСТИЧЕСКИЙ ЛИНТЕР ДЛЯ

ЯЗЫКА ПРОГРАММИРОВАНИЯ TIGER

АВТОРЕФЕРАТ БАКАЛАВРСКОЙ РАБОТЫ

студента 4 курса 411 группы

направления 02.03.02 — Фундаментальная информатика и информационные

технологии

факультета КНиИТ

Афанасьева Артёма Андреевича

Научный руководитель

доцент, к. ф.-м. н. С. В. Миронов

Заведующий кафедрой

к. ф.-м. н., доцент А. С. Иванов

Саратов 2020

СОДЕРЖАНИЕ

ВВЕДЕНИЕ . 3

1 Теоретические сведения. Обзор предметной области . 4

1.1 Оформление программ . 4

1.2 Обзор предметной области . 6

1.3 Язык Tiger . 7

2 Реализация . 8

3 Результаты. 13

ЗАКЛЮЧЕНИЕ . 15

ВВЕДЕНИЕ

В настоящее время языковые инструменты играют значительную роль в

процессе разработки программного обеспечения (используются в IDE, серви-

сах хостинга проектов и т.д.). Особой популярностью пользуются линтеры —

инструменты для проверки кода и поиска в нем различного рода ошибок и

отклонений от принятых правил.

В данной работе рассматриваются стилистические линтеры. Их работа

заключается в поиске и исправлении стилистических ошибок и отклонений в

исходных текстах. Такие ошибки и отклонения могут присутствовать на раз-

ных уровнях программы. На текстовом уровне они представлены отсутствием

должного форматирования, а на уровне синтаксиса — использованием неже-

лательных, либо сомнительных конструкций, которые могут быть заменены

более удачными альтернативами.

К сожалению, большая часть стилистических линтеров предоставляет

ограниченные возможности по определению собственного стиля оформления.

Обычно они сводятся к включению/выключению предопределенных правил с

помощью конфигурационного файла. Такой подход позволяет описывать лишь

стили, которые можно представить в виде композиции имеющихся правил, так

как определение собственных правил не предусмотрено.

Целью работы является разработка линтера tigstyle для языка Tiger, поз-

воляющего задавать оформление декларативно: с помощью шаблонов фор-

матирования и правил замены одних конструкций на другие. Такой подход

позволяет использовать единый синтаксис для определения как встроенных,

так и пользовательских правил.

Для достижения цели решались следующие задачи:

— Рассмотреть имеющиеся решения для форматирования и линтинга.

— Проанализировать существующие подходы к описанию стилистических

требований.

— Разработать и реализовать алгоритм декларативного линтинга.

— Проанализировать полученные результаты.

Работа выполнена на 89 страницах машинописного текста; состоит из

введения, 3 глав, заключения; содержит 20 рисунков и 11 приложений. Список

литературных источников включает 45 наименований.

3

1 Теоретические сведения. Обзор предметной области

В первой главе содержатся теоретические сведения, необходимые для по-

нимания работы линтера, а также обзор предметной области, завершающийся

анализом преимуществ и недостатков существующих инструментов.

1.1 Оформление программ

Линтер имеет дело с двумя аспектами оформления: форматированием

исходного кода и альтернативными синтаксическими конструкциями.

Первый аспект оформления — форматирование, под которым подразуме-

вается взаимное расположение лексем исходного текста, определяемое типом,

положением и количеством используемых пробельных символов. Ниже при-

ведены 2 варианта форматирования фрагмента кода на языке C.

int main(){time_t t=time(NULL);struct tm*tm

=localtime(&t);switch(tm->tm_hour){case 6:

case 7:case 8:case 9:case 10:case 11:printf

("Good morning! \n ");break;case 12:case 13:

case 14:case 15:case 16:case 17:printf("Go"

"od day! \n ");break;default:printf("Good ni"

"ght! \n ");break;}return 0;}

Рисунок 1 – Неформатированный код

Функция, приведенная на рисунке 1, синтаксически корректна и имеет

простую логику, но ее восприятие затруднено плохим форматированием.

int main() {

time_t t = time(NULL);

struct tm* tm = localtime(&t);

switch(tm->tm_hour) {

case 6:case 7:case 8:

case 9:case 10:case 11:

printf("Good morning! \n ");

break;

case 12:case 13:case 14:

case 15:case 16:case 17:

printf("Good day! \n ");

break;

default:

printf("Good night! \n ");

break;

}

return 0;

}

Рисунок 2 – Форматированный код

4

Функция, приведенная на рисунке 2, с точки зрения компилятора не

отличается от предыдущей, однако человеку такой вариант форматирования

проще понимать и модифицировать.

Второй аспект оформления — используемые в программе конструкции.

Некоторые идеи в программировании можно представить различными спо-

собами. Например, бесконечный цикл в C можно оформить как с помощью

конструкции while, так и с помощью конструкции for (см. рисунок 3). При

этом, в случае использования while, в качестве условия окончания цикла мо-

жет быть любое истинное выражение.

while (<true_constant>) {

<body>

}

(a) C помощью конструкции while

for (;;) {

<body>

}

(b) C помощью конструкции for

Рисунок 3 – Варианты оформления бесконечного цикла на языке C

В рассмотренном примере нет никаких причин отдавать предпочтение

одной из конструкций перед другой. Выбор определяется лишь привычкой и

вкусом программиста.

Однако существуют случаи, когда из нескольких альтернативных пред-

ставлений одним следует отдавать предпочтение, а других — избегать. Напри-

мер, если используется сложная для понимания конструкция, которая может

быть заменена более простой. Использование таких нежелательных конструк-

ции можно считать ошибкой в оформлении программы.

Ошибки такого рода часто встречаются в коде начинающих программи-

стов. К ним, например, относится неоправданное использование конструкции

else if вместо else (см. рисунок 4).

if (<cond> == false) {

<body-1>

} else if (<cond> == true) {

<body-2>

}

(a) Нежелательный вариант

if (<cond>) {

<body-2>

} else {

<body-1>

}

(b) Предпочтительный вариант

Рисунок 4 – Использование else if вместо else

5

1.2 Обзор предметной области

Линтерами называют языковые инструменты, предназначенные для на-

хождения любых отклонений в программах, о которых не сообщает компи-

лятор. Они уходят своими корнями к утилите lint, разработанной Стивеном

Джонсоном в 1978 году в Bell Labs для поиска фрагментов кода в программах

на C, вызывающих потенциальные проблемы с переносимостью.

С момента появления lint сфера применения линтеров значительно рас-

ширилась. Современные линтеры поддерживают проверки на наличие син-

таксических ошибок, использование неопределенных переменных, нарушение

стилевых правил и многие другие потенциальные проблемы. Также, в отличие

от lint, они способны трансформировать исходный текст, исправляя нежела-

тельные фрагменты кода.

В данной работе рассматриваются стилистические линтеры. Их работа

заключается в поиске и исправлении ошибок в оформлении программ. Эти

инструменты работают с кодом как на текстовом уровне, так и на структурном.

На текстовом уровне выполняются проверки, связанные с отдельными

символами (или группами символов). Например, здесь могут проверяться дли-

ны строк, наличие табуляций, перевода строки в конце файла и т. п. На струк-

турном уровне проверяется структура программ. Например для языка C, здесь

можно осуществить проверку наличия оператора break внутри каждого блока

case, или блока default в конце конструкции switch.

На структурном уровне также же возможны проверки, связанные с нали-

чием нежелательных конструкций. Так hlint, линтер для языка Haskell, имеет

ряд правил, связанных с упрощением конструкций, за счет использования

более специализированных функций. Например, фрагмент кода concat (map

escapeC s) hlint предложит заменить на concatMap escapeC s. А линтер

для языка C++ clang-tidy позволяет заменять циклы for, в которых исполь-

зуется переменная-итератор на эквивалентные диапазонные циклы из C++11.

В рамках работы был проведен обзор популярных линтеров для раз-

личных языков программирования. Рассматривались способы конфигурации,

предоставляемые линтерами. Под конфигурацией имеется ввиду включение/

выключение правил, добавление новых (собственных) правил.

Подборка линтеров основана на списке из репозитория Awesome Linters.

Представленные там линтеры были отсортированы по количеству звезд их

6

github-репозитория. После этого были выбраны 5 самых популярных — по од-

ному для каждого языка: standard для JavaScript (23, 8 тыс. звезд), swiftlint

для Swift (13, 5 тыс. звезд), rubocop для Ruby (10, 8 тыс. звезд), checkstyle

для Java (5, 3 тыс. звезд) и pycodestyle для Python (4, 1 тыс. звезд).

Было замечено, что в подборке чаще всего (в 4 из 5 линтеров) встречает-

ся настройка с помощью конфигурационных файлов. Этот способ достаточно

прост и предоставляет некоторую гибкость за счет параметризации правил,

однако не позволяет пользователю добавлять собственные правила. Также, во

всех линтерах помимо swiftlint добавление собственных правил возмож-

но только путем расширения инструмента. Для пользователей, не имеющих

опыта работы с представлением программ в виде синтаксических деревьев

это может оказаться значительным препятствием. swiftlint позволяет опи-

сывать собственные правила с помощью регулярных выражений, но область

применения такого подхода ограничена простыми конструкциями.

На основе анализа было сделано заключение о том что, рассмотренные

линтеры не предоставляют достаточно гибкого и в тоже время простого спосо-

ба определения стилистических правил. Данная работа нацелена на решение

этой проблемы.

1.3 Язык Tiger

В качестве целевого языка для tigstyle был выбран модельный язык Tiger

из серии книг Эндрю Аппеля «Modern Compiler Implementation».

По описанию Аппеля, Tiger — это простой, но не тривиальный импе-

ративный Algol-подобный язык программирования, с вложенными областями

видимости и записями. Tiger поддерживает целочисленные и строковые пере-

менные, массивы, записи; вложенные описания типов, переменных и функций.

По синтаксису Tiger напоминает функциональные языки.

Ниже приведена простая Hello World программа на Tiger, использующая

функцию для вывода строки:

1 let function hello() = print("Hello, World! \n ")

2 in hello() end

Более подробное описание языка доступно в книгах Аппеля, а также на

сайте исследовательского института LRDE.

7

2 Реализация

Вторая глава начинается с пояснения задачи и постановки требований к

инструменту. Далее идет описание используемых в работе технологий, а также

применяемых структур данных. За ним следует обзор архитектуры инструмен-

та и писание отдельных частей программы и этапов ее работы.

Работа инструмента может осуществляться в двух режимах: отчета и

интерактивном. В режиме отчета линтер проверяет всю программу и возвра-

щает список найденных ошибок. В интерактивном режиме линтер последо-

вательно проверяет узлы программы. При нахождении ошибки пользователю

предлагается ее исправить. Если пользователь соглашается, исправленный код

сохраняется в выходной файл, а линтер переходит к следующему узлу.

Линтер проверяет ошибки двух видов: связанные с форматированием

либо с возможностью применения правила замены. Правила форматирования

и замены определяются в шаблонном файле на специальном языке.

В основе правил лежат шаблоны — выражения на языке Tiger, в которые

вместо подвыражений могут входить специальные индентификаторы — пере-

менные захвата. Списочные переменные начинаются с символа @ и исполь-

зуются вместо списочных конструкций. Скалярные переменные начинаются с

символа $ и используются вместо несписочных конструкций.

Правило форматирования представляет шаблон, окруженный парными

скобками [[,]] и не содержащий вложенных подвыражений (только перемен-

ные захвата). Пример правила форматирования приведен на рисунке 5.

/* exp:let */

[[let @ in @ end]]

[[let @

in @

end]]

Рисунок 5 – Правило форматирования для конструкции let-in-end

Правило замены состоит двух частей (левой и правой), которые связаны

символом >. Части правила — шаблоны, окруженные парными скобками [,] .

Пример правила замены приведен на рисунке 6.

/* redundant parenthesis */

[if ($1) then $2 else $3] > [if $1 then $2 else $3]

Рисунок 6 – Правило замены, избавляющееся от ненужных скобок

8

Также существуют ошибки форматирования, которые невозможно опи-

сать используя шаблоны. Они связаны с конструкциями списочного вида:

— последовательностями определений (переменных, типов, функций);

— параметров и аргументов функций;

— аргументов конструкторов для записей, кортежей, списков;

— цепочек бинарных операторов.

Такие конструкции обрабатываются по предопределенному алгоритму.

tigstyle не позволяет задать их стиль декларативно.

Работа линтера связана с обработкой языковых конструкций, извлечен-

ных из исходного текста на этапе разбора. В связи с этим структуры данных,

используемые для хранения этих конструкций, являются одним из самых важ-

ных элементов линтера. Речь идет о синтаксических деревьях, представляю-

щих узлы программы, и токенах.

Для хранения токенов был выбран двусвязный список. Это структура

данных позволяет эффективно осуществлять обход, вставлять и удалять от-

дельные элементы и их цепочки (для осуществления замен в исходном тексте).

Для представления узлов синтаксического дерева используется един-

ственный класс (вместо альтернативы, когда используется отдельный класс

для каждого типа узла). Каждый узел содержит список с его дочерними узла-

ми. Для большинства конструкций языка длина списка фиксирована и заранее

известна. Для списочных конструкций длина является произвольной.

Дочерними узлами могут быть как конструкции (поддеревья) так и от-

дельные токены (листовые узлы). В том числе, в качестве дочерних узлов

могут выступать не значимые с точки зрения семантики токены вроде разде-

лителей (;, :, . . .), скобок ({}, (), . . .) и даже комментариев. Для хранения

комментариев у каждого внутреннего узла дерева имеется 3 списка: предше-

ствующих, последующих и внутренних комментариев. Прикрепление коммен-

тариев к узлам происходит на отдельной стадии постобработки. В грамматику

языка они не входят.

Такие деревья, содержащие токены и комментарии, называются Lossless

Syntax Tree, что можно перевести на русский как «синтаксическое дерево без

потерь». Под потерями имеется в виду утрата какой-либо значимой с точки

зрения человека (а не компилятора) информации о коде: форматировании,

комментариях и т.п.

9

Работа инструмента происходит в несколько этапов. Сначала осуществ-

ляется разбор исходных текстов входной программы и файла с правилами.

Затем следует этап постобработки: поиск семантических ошибок в правилах

и присоединение комментариев к синтаксическому дереву программы. Далее

выполняется линтинг: поиск ошибок в оформлении комментариев, форматиро-

вание конструкций; поиск кандидатов для применения замен. Если использует-

ся режим отчета, найденные ошибки выводятся к консоль. Если используется

интерактивный режим, поиск ошибок чередуется с запросами к пользователю

и исправлением найденных ошибок.

Код инструмента разделен на 4 модуля: tok, ast, frontend, linting.

Модуль tok определяет классы Token и Position. Класс Token описы-

вает токены, возвращаемые лексическим анализатором. Каждый токен хранит

свою начальную и конечную позиции в исходном тексте. Эти позиции пред-

ставлены экземплярами класса Position. Помимо описанных классов модуль

предоставляет функции для работы с токенами. Большая их часть связана либо

с манипуляцией двусвзяным списком, либо с изменением позиций токенов.

Модуль ast содержит определение класса Node, представляющего со-

бой узел дерева разбора программы, а также большой набор вспомогательных

функций для обхода, перемещения, клонирования, печати и выполнения дру-

гих действий над узлами дерева.

Модуль frontend отвечает за разбор входных файлов: как исходных

текстов на языке Tiger, так и файлов с правилами. frontend, в свою оче-

редь, содержит подмодули lexing и parsing, отвечающие за лексический и

синтаксический разбор исходных текстов соответственно. Помимо описанных

подмодулей во frontend также входит код, выполняющий валидацию правил,

после успешного их разбора.

Наконец, модуль linting содержит весь код, связанный с линтингом.

Здесь определены классы Linter, BaseLinter, CommentLinter, FormatLinter,

ReplacementLinter, ListLinter и BinopLinter, а также класс LintingError.

Процесс линтинга разбит на несколько частей-подлинтеров. Общие эле-

менты вынесены в класс BaseLinter, а внешний интерфейс предоставляется

агрегирующим классом Linter. Linter содержит экземпляры всех подлинте-

ров и вызывает их по мере необходимости при проверке исходного текста.

Класс BaseLinter определяет два абстрактных метода: check и fix.

10

Метод check принимает на вход узел синтаксического дерева node и

набор опциональных параметров (настроек) kwargs, контролирующих требо-

вания линтера. Метод возвращает список экземпляров класса LintingError

(класс описан дальше). Если ошибок нет, список должен быть пустым.

Метод fix принимает на вход код ошибки error_code, узел синтакси-

ческого дерева, с которым связана ошибка node, словарь data, содержащий

дополнительную информацию об ошибке, и набор настроек kwargs. Метод

исправляет синтаксическое дерево так, чтобы оно отвечало предъявляемым

требованиям.

Возвращаемые линтером ошибки — экземпляры класса LintingError.

Класс содержит следующие поля:

— code— код ошибки. Это строка-идентификатор для ошибок одного вида.

— node— узел, в котором была найдена ошибка.

— pos— позиция в тексте, где была найдена ошибка.

— data— словарь, содержащий дополнительные сведения об ошибке.

Первый из цепочки вызываемых линтеров — CommentLinter. Данный

линтер выполняет проверки, связанные с комментариями. Он может удалять

любой тип комментариев, если они запрещены, и проверять форматирование

предшествующих комментариев (если они разрешены).

Линтер использует следующие коды ошибок:

— comment:illegal:preceding— запрещенный предшествующий коммен-

тарий.

— comment:illegal:enclosed— запрещенный внутренний комментарий.

— comment:illegal:trailing— запрещенный последующий комментарий.

— comment:preceding:line— ошибка в форматировании предшествующе-

го комментария. Комментарий расположен на той же строке, что и узел,

к которому он относится

— comment:preceding:block— ошибка в форматировании предшествую-

щего комментария. Комментарий расположен на строке перед узлом и

не выровнен с началом узла.

Далее вызывается ReplacementLinter. Его метод check проверяет воз-

можность применения правила замены к узлу, а метод fix осуществляет при-

менение правила. ReplacementLinter использует единственный код ошибки:

replacement.

11

Третьим по счету является FormatLinter. Он выполняет проверку на со-

ответствие форматирования узла форматированию, заданному в файле с пра-

вилами. Полный код класса доступен в приложении. FormatLinter использует

единственный код ошибки: format.

Следующим вызывается ListLinter. Он проверяет и исправляет фор-

матирование узлов-списков.

Линтер использует следующие коды ошибок:

— list:dec:same_line— два определения находятся на одной строке.

— list:collapse— найден блок пустых строк (возможно схлопывание).

— list:empty_line— найдена пустая строка.

— list:align— первый элемент списка, расположенный на новой строке,

не выровнен по голове списка.

— list:separator:adjacent— найден разделитель, отделенный от послед-

него элемента одним или более пробелами.

— list:separator:space— найден элемент списка, не отделенный от по-

следнего разделителя единственным пробелом.

— list:width— список пересекает максимальную длину строки.

Последним управление получает BinopLinter. Он проверяет и исправ-

ляет форматирование цепочек бинарных операторов. BinopLinter использует

единственный код ошибки: binop:width. Ошибка возникает, когда цепочка

операторов пересекает границу максимальной длины строки.

12

3 Результаты

В третей главе приводится пробный запуск линтера, рассматриваются

преимущества и недостатки разработанного инструмента и декларативного

подхода к линтингу в целом.

Ниже приводится урезанный вариант отчета о запуске программы (опу-

щен диалог с пользователем).

Файл с правилами имеет следующий вид:

1 [[let @

2 in @

3 end]]

4 [[function $(@) =

5 $]]

6 [[$ + $]]

7

8 [if $a := $b then $1 else $2] > [if $a = $b then $1 else $2]

Исходная программа состоит из единственного выражения let-in-end:

1 let

2 /* a comment */

3 function succ (a:int)

4 = a +1

5 var a : int := 1

6 in print(if a := succ(0) then "success" else "failure")

7 end

Результатом запуска утилиты является файл со следующим содержимым:

1 let /* a comment */

2 function succ(a:int) =

3 a + 1

4 var a : int := 1

5 in print(if a = succ(0) then "success" else "failure")

6 end

Разработанный инструмент успешно справляется с проверкой оформле-

ния исходных текстов и в случае необходимости может вносить исправления.

Декларативный подход хорошо подходит для проверки простых кон-

струкций языка и по сравнению со стандартными методами имеет преимуще-

ства в виде большой гибкости и простоты определения используемого оформ-

13

ления. С другой стороны, к более сложным конструкциям, оформление кото-

рых зависит от различных условий (например, длины списочных выражений),

декларативный подход применим лишь частично. Для них могут быть опре-

делены некоторые элементы форматирования, но не все правило целиком.

В связи с этим правила оформления для сложных или плохо описывае-

мых элементов (комментариев, списков, цепочек бинарных операторов) опре-

деляются в исходном коде и не подлежат изменению со стороны пользователя.

Поэтому tigstyle нельзя назвать полностью декларативным линтером.

Для решения проблем, связанных со сложными конструкциями, возмож-

но введение в язык условных правил, использующих различные варианты

оформления в зависимости от контекста (тип родительского узла, ширина фор-

матируемой конструкций и т. п.). Однако описание бесконечных конструкций

(списков и цепочек операторов) все равно представляется проблематичным.

Особенные трудности представляет декларативное описание формати-

рования комментариев. Они могут встречаться в любом месте внутри кон-

струкции, поэтому описание всех возможных положений потребует чрезмерно

большого количества правил. Декларативных подход, в том виде, в котором

он описан в рамках данной работы, для этой задачи не подходит.

Несмотря на все рассмотренные недостатки декларативного подхода, его

явным преимуществом является простота и гибкость описания оформления

для отдельного класса конструкций. В связи с этим представляется возможным

использовать его как часть более сложного алгоритма.

14

ЗАКЛЮЧЕНИЕ

В рамках работы был разработан декларативный стилистический лин-

тер tigstyle для языка программирования Tiger. На вход утилита принимает

исходный текст программы на языке Tiger и набор правил, декларативно опи-

сывающих разрешенные варианты форматирования и возможные замены. Ре-

зультатом ее работы в зависимости от выбранного режима является список

найденных ошибок и, возможно, исправленный код.

Утилита имеет некоторые недостатки, которые были рассмотрены в рам-

ках работы, но в целом успешно справляется с поставленной задачей и в

отдельных случаях имеет ряд преимуществ перед альтернативами.

15

	ВВЕДЕНИЕ
	Теоретические сведения. Обзор предметной области
	Оформление программ
	Обзор предметной области
	Язык Tiger

	Реализация
	Результаты
	ЗАКЛЮЧЕНИЕ

