
МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение

высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ

ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ИМЕНИ Н. Г. ЧЕРНЫШЕВСКОГО»

Кафедра Математической кибернетики и компьютерных наук

РАЗРАБОТКА МОБИЛЬНОГО ФИТНЕС-ПРИЛОЖЕНИЯ ДЛЯ

ОПЕРАЦИОННОЙ СИСТЕМЫ ANDROID

АВТОРЕФЕРАТ БАКАЛАВРСКОЙ РАБОТЫ

студента 4 курса 411 группы

направления 02.03.02 — Фундаментальная информатика и информационные

технологии

факультета КНиИТ

Авраменко Алексея Владиславовича

Научный руководитель

доцент, к. ф.-м. н. А. С. Иванов

Заведующий кафедрой

к. ф.-м. н. А. С. Иванов

Саратов 2020

СОДЕРЖАНИЕ

ВВЕДЕНИЕ . 3

1 Основное содержание работы . 4

1.1 Рассмотрение аналогов приложения . 4

1.2 Компоненты Android приложений . 4

1.3 Реализация практической части . 8

ЗАКЛЮЧЕНИЕ . 14

ВВЕДЕНИЕ

В настоящее время мобильные гаджеты стали очень тесно связаны с

повседневной жизнью людей. Сложно представить современного человека,

не имеющего смартфон с доступом в интернет. С каждым днём всё больше

и больше людей становятся пользователями различных приложений и сер-

висов. Самой распространённой мобильной операционной системой является

Android. На момент написания данной работы, количество активных устройств

во всём мире, работающих на данной операционной системе, составляет более

2,5 миллиардов.

Целью настоящей работы является создание мобильного Android при-

ложения в помощь организации занятия спортом, с возможностью хранения

личных данных пользователя и синхронизацией с облачной базой данных. Для

данной цели были определены следующие задачи:

— Рассмотрение аналогов фитнес-приложений для операционной системы

Android,

— Изучение структуры Android приложений и их архитектурных компо-

нентов,

— Разработка графического пользовательского интерфейса,

— Изучение работы облачной базы данных и её использование,

— Изучение работы встраиваемой локальной базы данных,

— Реализация мобильного приложения для операционной системы Android.

Работа состоит из введения, трёх глав, заключения, списка из 20 источ-

ников и трёх приложений. В первой главе под названием «Рассмотрение ана-

логов приложения» рассматриваются аналоги мобильных фитнес-приложений

для анализа логики работы интерфейсов, на основе которого, будет разраба-

тываться бизнес логика приложения из практической части работы. Во второй

главе «Компоненты Android приложений» описаны архитектурные компонен-

ты Android приложений, при помощи которых была реализована структура

работы приложения, а также визуальные компоненты, которые представляют

собой элементы пользовательского интерфейса. В третьей главе «Реализация

приложения» описаны инструменты разработки практической части, а также

логика работы реализованного приложения.

3

1 Основное содержание работы

1.1 Рассмотрение аналогов приложения

В работе было рассмотрено три аналога фитнес-приложений:

— Приложение «Библиотека упражнений». Данное приложение представ-

ляет из себя справочник упражнений и программ тренировок. У пользо-

вателя есть возможность использовать данное приложение как справоч-

ник упражнений, а также руководствоваться составленными программа-

ми тренировок.

— Приложение «Фитнес тренер». Данное приложение представляет из се-

бя справочник программ тренировок и даёт возможность пользователю

самостоятельно добавлять тренировки и хранить их в памяти устройства.

— Приложение «GymLog — онлайн дневник тренировок» представляет со-

бой пользовательский сервис для помощи занятий спортом в тренжёрном

зале. Пользователь приложения имеет возможность изучать упражнения,

просматривать и использовать программы тренировок, а также, автори-

зовавшись, составлять свои собственные тренировки и хранить их.

1.2 Компоненты Android приложений

В данной главе описаны основные архитектурные компоненты Android

приложений.

Activity (Активность):

Основной компонент Android приложений. Именно в нём происходят

действия, происходящие на экране. Они представляют из себя окна, заполня-

ющие собой всё пространство экрана, что видит пользователь. В определённый

момент времени, на экране отображается одно Activity, а, в процессе работы,

приложение переключается между ними.

Жизненный цикл приложения:

В силу того, что мобильное приложение представляет собой структуру

действий, которые имеют свойство влиять на другие действия, с течением

времени, имеет место такое понятие как жизненный цикл. Так как компонент

Activity является полным отражением работы приложения в момент времени,

то имеет место говорить о жизненном цикле компонента Activity. В жизненном

цикле Activity 6 основных методов переходов состояний:

— Метод onCreate() срабатывает, когда система впервые создаёт Activity.

4

Далее, после создания Activity, оно перезодит в состояние «created», а

после, в состояние «started». В этом методе вы выполняете базовую

логику запуска приложения, которая должна происходить только один

раз за весь период действия.

— Метод onStart() срабатывает, когда перехожит в состояние «started».

Этот метод делает Activity видимым для пользователя, так как готовиться

к деятельности, перед тем как стать интерактивным. После завершения

этого вызова, действие переходит в состояние «resumed».

— Метод onResume() срабатывает после того, как Activity переходит в сто-

стояниe «resumed». Это состояние, в котором пользователь взаимодей-

ствует с приложением. Приложение остаётся в этом состоянии пока не

произойдёт так называемое, прирывающее событие.

— Метод onPause() вызывается, когда Activity переходит в состояние «paused».

При выполнении этого метода, приложение находится в состоянии паузы,

и будет находиться в нём, пока снова не перейдёт в состояние «resumed».

— Метод onStop() вызывается, когда Activity переходит в состояние «stopped».

Когда Activity переходит в остановленное состояние, любой компонент,

связанный с жизненным циклом Activity, получит «ON_STOP» событие.

— Метод onDstroy() вызывается до уничтожения Activity.

Fragment:

Фрагменты впервые появились в Android версии 3.0. Их основной целью

является обеспечение большей динамичностью и гибкостью пользовательских

интерфейсов на больших экранах, например, у планшетов. Поскольку экраны

планшетов гораздо больше, чем у смартфонов, они предоставляют больше воз-

можностей для объединения и перестановки компонентов пользовательского

интерфейса. Фрагменты избавляют разработчика от необходимости управлять

сложными изменениями в иерархии представлений. Фрагмент всегда должен

быть встроен в Activity, и на его жизненный цикл напрямую влияет жизнен-

ный цикл Activity. В настоящий момент частой практикой является создание

единого Activity, с множеством фрагментов внутри него.

LiveData:

Важнейшим архитектурным компонентом Android приложения является

LiveData. LiveData — это класс хранения данных, работающий по принципу

паттерна проектирования Observer (наблюдатель). Принципиальным отличием

5

является то, что LiveData учитывает жизненный цикл других компонентов

приложения, таких как Activity, фрагменты или службы. Это гарантирует то,

что LiveData будет обновлять только те компоненты приложения, которые

находятся в состоянии активного жизненного цикла.

View Model:

ViewModel — это класс, отвечающий за логику работы приложения, за

связь между данными и пользовательским интерфейсом. Компоненты архи-

тектуры предоставляют ViewModel вспомогательный класс для контроллера

пользовательского интерфейса, который отвечает за подготовку данных для

пользовательского интерфейса. ViewModel объекты автоматически сохраняют-

ся во время изменений конфигурации, так что содержащиеся в них данные

сразу же становятся доступны для следующего Activity или экземпляра фраг-

мента. Например, если нужно отобразить список пользователей в приложении,

то необходимо возложить ответственность за получение и сохранение списка

пользователей классу ViewModel вместо Activity или фрагмента.

Таким образом, с помощью компонента ViewModel, можно отделить ло-

гику работы приложения от логики обработки данных, а также использо-

вать его в качестве посредника для обмена данными между фрагментами или

Activity.

Элемент ConstraintLayout:

С появлением версии «Android Studio» 2.2, разработка пользовательско-

го интерфейса значительно упростилась. Дело в том, что с появлением этого

элемента, появилось больше возможностей позиционировать элементы View,

находящиеся внутри ConstraintLayout, с помощью, так называемых, привязок.

У любого элемента с каждой из четырёх сторон есть возможность «привязать-

ся» к окружающим его элементам. При привязывании элементов устанавлива-

ется фиксированная дистанция до тех элементов, к которым привязан данный

элемент. Также, при помощи ConstraintLayout можно задать область, которую

будет занимать элемент, в процентном соотношении от экрана. Таким образом,

вёрстка Activity и фрагментов приложения стала гибче.

Элемент BottomNavigationView:

Элемент BottomNavigationView представляет собой стандартную ниж-

нюю панель навигации для приложения. Нижние панели навигации позволяют

пользователям легко просматривать и переключаться между представлениями

6

верхнего уровня одним нажатием. Их следует использовать, когда приложение

имеет от трех до пяти пунктов назначения верхнего уровня.

Элемент TabLayout:

Элемент TabLayout предоставляет горизонтальный макет для отображе-

ния вкладок. Макет обрабатывает взаимодействия для группы вкладок, вклю-

чая:

— прокрутка поведения

— жесты

— выбор вкладки

— анимации

— выравнивание

Элемент ListView:

Элемент ListView отображает коллекцию представлений с вертикальной

прокруткой, где каждое представление располагается сразу под предыдущим

представлением в списке.

Элемент Spinner:

Элемент Spinner предоставляет быстрый способ выбрать одно значение

из набора. В состоянии по умолчанию счетчик показывает свое текущее вы-

бранное значение. Если дотронуться до счетчика, отобразится раскрывающее-

ся меню со всеми другими доступными значениями, из которых пользователь

может выбрать новое.

PickerDialog:

PickerDialog предоставляет виджет для выбора даты.

Adapter:

Adapter — это класс, который связывает наборы данных с View элемента-

ми. То есть, Adapter отвечает за передачу данных из бизнеслогики приложения

в вид, то есть во View. К примеру, у нас есть элемент ListView, элементами ко-

торого являются TextView. Для того, чтобы ввести строковые данные в ListView

мы должны определить массив строк, создать объект типа ArrayAdapter, пере-

дать массив строк объекту адаптера, а объект адаптера записать в поле объекта

ListView. В методе getView будет происходить отрисовка элементов ListView

с переданными строками коллекции.

7

1.3 Реализация практической части

Было реализовано мобильное приложение для операционной системы

Android. Оно представляет из себя 3 вкладки нижнего меню, где крайняя

левая вкладка является справочником упражнений, которые разделены на 3

категории по частям тела: "руки "туловище"и "ноги". Информация об упраж-

нениях хранится в облачной базе и загружается из интернета. Средняя вкладка

является личным журналом тренировок пользователя. Пользователь имеет воз-

можность записывать свои собственные тренировки, которые сохраняются в

облачной базе данных. Тренировка представляет из себя набор записей по

упражнениям, то есть запись представляет из себя упражнение и запись ин-

формации, например о количестве подходов, повторений и используемом весе.

Журнал тренировок доступен только зарегистрированным и авторизованным

пользователям. Если пользователь не авторизован, то средняя вкладка выво-

дит сообщение об этом. Третья вкладка отвечает за аутентификацию, то есть

за авторизацию и регистрацию. Также, к приложению подключена локальная

база данных. При запуске приложения, данные об упражнениях загружаются

в локальную базу данных.

Средствами разработки приложения являются:

— Среда разработки «Android Studio»;

— Облачная СУБД от компании «Firebace» класса NoSQL;

— Встраиваемая кроссплатформенная СУБД «SQLite».

Структура коллекций облачной СУБД:

Для хранения и синхронизации данных используется NoSQL база дан-

ных, предоставляемая компанией «Firebase». Данные в этом сервисе хранятся

в виде коллекций и документов, имеющих структуру JSON файлов. Были

организованы две коллекции, это коллекция «User», содержащая в себе до-

кументы, имеющие строковые ключи, и содержащие поля: «email», «name»,

«surname», «workouts». Поле «workouts» представляет собой ArrayList, в

котором определены поля «date», «id» и «notes», который также представ-

ляет собой ArrayList. В полях элементов «notes» определены поля: «d»,

«id_exercise», «id_workouts», «record».

Подключение SQLite и создание локальной базы данных:

Для локального хранения данных приложения, была использована встра-

иваемая СУБД SQLite. Для создания таблиц, был реализован класс DBHelper,

8

наследованный от абстрактного класса для работы с СУБД SQLiteOpenHelper.

В данном классе происходит создание самой базы данных и, содержащихся в

ней, таблиц.

Классы сущностей:

Для работы с данными приложения, были реализованы классы сущно-

стей для работы с базой данных:

— User, с полями email: String, name: String, surname: String, journal:

List<Workout>

— Workout, с полями id: String, date: GregorianCalendar, idUser: String

, notes: List<Note>

— Note, с полями id: String, record: String, idWorkout: String, idExersice

: String

— Exercise, с полями id: String, name: String, partOfBody: String,

description: String

Работа фрагмента авторизации:

Начало приложения начинается с выполнения кода класса MainActivity

. После инициализации главного экрана, начинается выполнение кода класса

фрагмента авторизации.

Разработка приложения была начата с вёрстки ConstrLayout фрагментов

аутентификации. Начальным фрагментом во вкладке аутентификации является

фрагмент авторизации в приложении. Был создан класc

AuthorizationFragment отражающий жизненный цикл фрагмента авториза-

ции LiveCycle.

В данном файле, в методе onCreateView инициализируем ViewModel

данного фрагмента. Далее «раздуваем» и возвращаем view в MainActivity.

Далее, срабатывает метод onViewCreated. В данном методе происходит ини-

циализация всех элементов View. Это элементы ввода текста PlainText, в

которые пользователь вводит email и пароль для авторизации, и 2 кнопки,

отвечающие за авторизацию и регистрацию пользователя. Для авторизации и

регистрации пользователя, был создан класс Authentication. Также, для про-

верки подключения к интернету, был реализован статический класс, Далее,

мы выполняем проверку на подключение к интернету, для этого был создан

статический класс InternetConnection с методом isConnect для проверки

на соединение с интернетом.

9

При авторизации, происходит проверка на наличие подключения к ин-

тернету, если интернет есть, то проверяем статус предыдущей сессии, был

интернет, или нет и совпадает ли пользователь предыдущей сессии с тем

пользователем, который авторизуется в данный момент. Для этих целей, в ло-

кальной базе данных, была создана таблица settings содержащая одну запись,

со столбцами status для хранения факта о том, был интернет либо отсутствовал

(значения «1» или «0» соответственно) и email для хранения идентификатора

пользователя предыдущей сессии. Итак, если в предыдущей сессии интернет

отсутствовал и значение идентификатора пользователя предыдущей сессии

совпадает с польхователем, который авторизуется в данный момент, то данные

пользователя, хранящиеся в глобальной базе данных в интернете, перезапи-

сываются данными, хранящимися в локальной базе данных. Иначе, данные о

пользователе перезаписываются из глобальной базы данных в локальную базу

данных. Если же интернет отсутствует, то данные о пользователе загружаются

из локальной базы данных.

При обращении к облачной базе, используется Android компонент LiveData

. Глобальная база данных даёт ответ на вопрос о том, авторизован пользователь

в интернете, или нет, если авторизован, то переходим на фрагмент аккаунта,

иначе выполнение кода идёт дальше. Так как при попадании на фрагменты,

приложение выполняет заново их код, и жизненный цикл начинается снача-

ла инициализируется переменная типа User. В данную переменную заносит-

ся значение поля класса AuthorizationViewModel типа User. Дело в том,

что ViewModel класс данного фрагмента хранит в себе текущего авторизо-

ванного пользователя User и доступ к этой переменной, из объекта класса

AuthorizationViewModel есть во всём приложении. После возврата текущего

пользователя, выполняется проверка, авторизован ли пользователь, если он ав-

торизован, то выполняется переход на фрагмент аккаунта, иначе приложение

ждёт дальнейших действий.

Работа фрагмента аккаунта:

После успешной авторизации, приложение, с фрагмента авторизации,

переходит на фрагмент аккаунта. Во фрагменте аккаунта, жизненный цикл ко-

торого описывается классом Account Fragment выводится информация о те-

кущем пользователе в соответствующих View элементах. Также на фрагменте

существует кнопка выхода пользователя . При нажатии на кнопку, выполнение

10

кода переходит в слушатель кнопки. В слушателе вызывается метод recording

для синхронизации с облачной базой данных из класса AccountViewModel. В

данном методе, вызывается метод с аналогичным названием recording класса

RecordingToDB пакета Synchronization. В данный метод передаётся текущий

пользователь со своими данными, который завершает сессию. Логика данного

метода построена следующим образом: в таблице settings запоминается иден-

тификатор текущего пользователя, далее, данные о пользователе пересохраня-

ются (а если такого пользователя в локальной базе данных не существует, то

просто сохраняется) в локальной базе данных. Далее, происходит проверка на

подключение к интернету, и статус подключения также, как и идентификатор

пользователя, заносится в таблицу settings. Также, если соединение с интер-

нетом есть, то данные о пользователе записываютс либо перезаписываются в

облачную базу данных.

Далее, после синхронизации, выполняется выход пользователя из об-

лачной базы и глобальному объекту текущего пользователя присваиванется

значение.

Работа фрагмента регистрации:

При нажатии на кнопку регистрации, во фрагменте авторизации, прило-

жение переходит во фрагмент регистрации. Во фрагменте регистрации ини-

циализированы поля регистрации, а именно name, surname, email, password и

повторениe password. При нажатии на кнопку «зарегистрироваться» выпол-

нение кода переходит в слушатель кнопки. В слушателе, вызывается метод

объекта ViewModel данного класса, а параметрами, взятыми из полей ввода.

Происходит регистрация и приложение переходит на фрагмент авторизации.

Работа фрагмента списка упражнений:

При переходе на левую вкладку нижнего меню приложения, действие пе-

реходит на фрагмент упражнений, который описан классом ExercisesFragment

. В данном фрагменте, для перехода вкладок между частями тел, соответствую-

щим упражнениям, используются элементы TabLayout и ViewPager. Элемент

ViewPager нужен элементу TabLayout для логики перехода между фрагмента-

ми. Чтобы задать логику переходов, был реализован класс TabLayoutPagerAdapter

, наследник FragmentStatePagerAdapter. В данном адаптере, метод getItem,

возвращает объект класса TabExercisesFragment, описывающий сразу 3 фраг-

мента с упражнениями, в зависимости от части тела. В конструктор класса

11

приходит соответствующий индекс, зависящий от выбранной пользователем

вкладки элемента TabLayout. При выполнении кода класса, описывающего

вкладки, в зависимости от переданного индекса, «раздувается» тот или иной

фрагмент, т.е. отправляется в MainActivity. Для каждого фрагмента опреде-

лён элемент ListView. Также создан общий вид для элементов ListView. Для

ListView упражнений реализуем адаптер, который будет принимать список

упражнений одной части тела.

Для нажатия на элемент ViewList с упражнениями, объявлен слушатель.

Внутри слушателя отправляется позиция элемента, на который нажали. После

этого мы переходим на новый фрагмент для описания упражнения, для этого

в новый фрагмент передаётся позиция для списка упражнений. Переход на

другой фрагмент осуществляется с помощью компонента LiveDatà. В мето-

де onResume общего класса для вкладки с упражнениями, подписываемся на

LiveData, которая изменяется в слушателе на клик на упражнение.

После того, как мы перешли на фрагмент описания конкретного упраж-

нения, по пришедшей позиции в списке упражнений, достаётся конкретное

упражнение, поля которого вставляются в элементы фрагмента. На экране по-

является название, изображение и описание упражнения, а в левом верхнем

углу, появляется кнопка возврата на предыдущий фрагмент.

Работа фрагмента журнала тренировок:

При нажатии на среднюю вкладку нижнего меню, приложение перехо-

дит во фрагмент журнала тренировок. В методе onCreateView класса этого

фрагмента, производится проверка на пользователя.

Если в объекте AuthorisationViewModel поле, типа User равно null

то «раздуваем» view, отвечающий за фрагмент сообщения о том, что поль-

зователь не авторизован, иначе, если он не равен null, то «раздуваем» view,

отвечающий за управление тренировками.

Данный фрагмент представляет собой ListView, с элементами, пред-

ставляющими собой тренировки пользователя. Элемент имеет TextView для

вывода даты и кнопку «удалить», для удаления тренировки.

При нажатии на кнопку «добавить тренировку» на экране появляется

виджет PickerDialog, представляющий из себя окошко выбора даты.

После нажатия кнопки «ок» в элементе ListView появляется тренировка

с заданной датой.

12

Работа фрагмента списка записей об упражнениях в тренировке:

Нажимая на имеющуюся тренировку, в списке тренировок, приложение

переходит на фрагмент списка заметок данной тренировки.

Во фрагменте списка записей, также, как и во фрагменте списка тре-

нировок, существует кнопка добавления новых элементов. Также, в элементе

ListView, установлен слушатель на нажатие на его элементы. После нажатия

на элемент, описывающий запись об упражнении, приложение переходит на

фрагмент изменения записи о тренировке.

Работа фрагмента изменения записи об упражнении:

После нажатия на элемент, описывающий запись о тренировке, прило-

жение переходит на фрагмент изменения тренировки. Он представляет из себя

фрагмент, на котором расположены выпадающий список Spinner с выбором

уже имеющимися в приложении упражнениями, текстовое поле для ввода и

кнопка сохранения изменений о заметке.

13

ЗАКЛЮЧЕНИЕ

По итогам выполненной работы, было создано мобильное Android при-

ложение в помощь организации занятия спортом, с возможностью хранения

личных данных пользователя и синхронизацией с облачной базой данных.

На основе рассмотренных аналогов, одной из целей разработки стало

внесение простоты и гибкости в работу с личными записями пользователя.

По сравнению с приведёнными аналогами, у пользователя есть возможность

записи каждой тренировки, без привязки к программе, и в том формате, в

котором ему удобно, так как ему предоставляется поле ввода, не привязанное

к конкретному формату записи.

В процессе разработки, возникали различные трудности, а, в частности,

с организацией бизнеслогики приложения, в силу использования облачной

базы данных. Тем не менее, удалось добиться корректной работы приложения

и цель данной работы была достигнута.

В данной работе были решены следующие задачи:

— Были рассмотрены аналоги фитнес-приложений для операционной си-

стемы Android.

— Была изучена структура Android приложений и их архитектурных ком-

понетнов.

— Был разработан графический пользовательский интерфейс приложения.

— Была изучена и использована облачная база данных.

— Была изучена и использована встраиваемая локальная база данных.

— Было реализовано мобильное приложение для операционной системы

Android.

14

	ВВЕДЕНИЕ
	Основное содержание работы
	Рассмотрение аналогов приложения
	Компоненты Android приложений
	Реализация практической части

	ЗАКЛЮЧЕНИЕ

