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Введение. Криптография позволяет ограничить круг получателей ресурсов,
используя алгоритмы шифрования и криптосистемы. Данный раздел форми-
ровался с давних времён, а сейчас является неотъемлемой частью сетевего
общения.

Тем не менее, несмотря на изобретательность сущетсвующих протоколов,
на ряду со способами защиты и сокрытия информации, развиваются методы
вскрытия криптосистем.

Метод создания криптосистем на основе эллиптических кривых над ко-
нечными полями, разработанный, независимо друг от друга, Нилом Кобли-
цем и Виктором Миллером в конце прошлого столетия, является одним из
перспективных.

Большинство современных криптографических систем можно перестро-
ить на криптосистемы на эллиптических кривых, основанные на задаче дис-
кретного логарифмирования на эллиптической кривой. Уже используемый
для конкретных конечных групп, алгоритм переписывается для использова-
ния рациональных точек эллиптической кривой.
Основное содержание работы. Пусть1 K — поле характеристики, отлич-
ной от 2, 3, и x3 + ax + b, где a, b ∈ K — кубический многочлен без крат-
ных корней. Эллиптическая кривая над K — это мнножество точек (x, y),
x, y ∈ K, удовлетворяющих уравнению

y2 = x3 + ax+ b (1.1)

вместе с единственным элементом, обозначаемым O и называемым «точка в
бесконечности».

Замечание 1.1 Общая формула уравнения эллиптической кривой, кото-
рая применима при любом поле имеет вид y2+a1xy+a3y = x3+a2x

2+a4x+a6.
Теорема 1.1 Для любой неособой кубической кривой имеется проектив-

ная замена координат, приводящая её в форму Вейерштрасса. Если коэффи-
циенты уравнения исходной кривой рациональны и на кривой имеется хотя
бы одна рациональная точка, то существует возможность найти проективную

1Коблиц, Н. Курс теории чисел и криптографии / Н. Коблиц — М.: Научное издательство ТВП, 2001.
— 260 с.
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замену с рациональны2 αi, βi, γi (i = 1, 2, 3), которая сможет преобразить
исходную кривую в кривую в форме Вейерштрасса с рациональными a и b.

Замечание 1.2 Если F (x, y) = 0 — неявное уравнение, выражающее y
как функцию x в (1.1), то есть F (x, y) = y2−x3− ax− b, то точка (x, y) этой
кривой называется неособенной или гладкой точкой, если по крайней мере,
одна из частных производных ∂F/∂x, ∂F/∂y в этой точке не равна нулю.

Предложение 1.1 Эллиптическая кривая, заданная уравнением (1.1),
является особой тогда и только тогда, когда её дискриминант равен 0. 4 =

4a3 + 27b2

Эллиптические кривые над R. Пусть E — эллиптическая кривая над ве-
щественными числами, и пусть P и Q — две точки на E. Определим точки
−P и P +Q по следующим правилам.

1. Если P — точка в бесконечности O, то −P = O и P + Q = O, то есть
O — тождественный элемент по сложению или «нулевой элемент» группы
точек.

2. Точки P = (x, y) и −P имеют одинаковые x-координаты, а их y-
координаты различаются только знаком, то есть −(x, y) = (x,−y).

3. Если P и Q имеют различные x-координаты, то прямая l = PQ имеет
с E ещё в точности одну точку пересечения R. За исключением, когда l —
касательная в одной из точек. В таком случае, если l касательная в точке P ,
то R = P . Определяем теперь P + Q как точку −R, то есть как отражение
от оси x третьей точки пересечения.

4. Если Q = −P , то полагаем P +Q = O.
5. Если P = Q, то считаем, что l — касательная к кривой в точке P . Пусть

R — единственная другая точка пересечения l с E. Полагаем P + Q = −R.
В качестве R берём P , если касательная l в P имеет «двойное касание», то
есть если P — точка перегиба кивой.

В соответствии с рисунком 1.1, чтобы найти P + Q на эллиптичсекой
кривой y2 = x3−x в плоскости xy, проводим прямую PQ и в качестве P +Q

берём точку, симметричную относительно оси x третьей точке, определяемой
пересечением PQ и кривой. Если P совпадёт с Q, то есть требуется найти

2Острик, В.В. Алгебраическая геометрия и теория чисел: рациональные и эллиптические кривые /
В.В. Острик, М.А. Цфасман — М.: МЦНМО, 2011. — 48 с.
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Рисунок 1.1

2P , тогда используется касательная в точке P . В таком случае точка 2P

симметрична третьей точке, в которой эта касательная пересекает кривую.
В соответствии с рисунком 1.2, представлен результат работы программы

для вычисления суммы точек эллиптической кривой, заданной в форме Вей-
ерштрасса, в случае, когда эллиптическая кривая задана с коэффициентами
a = 1 и b = 1.

Рисунок 1.2

Эллиптические кривые над C. Если задана эллиптическая криая (1.1) над
комплексными числами, то существует решётка L и функция комплексного
переменного, называемая функцией Вейерштрассе, со следующими свойства-
ми:

1. ℘(z) аналитична всюду, кроме точек L, в каждой из которых имеет
полюс второго порядка;

2. ℘(z) удовлетворяет дифференциальному уравнению

(℘′(z))2 = ℘3 + a℘+ b

4



и, следовательно, при любом z /∈ L точка (℘(z), ℘′(z)) лежит на эллиптиче-
ской кривой E;

3. два комплесных числа z1 и z2 дают одну и ту же точку (℘(z), ℘′(z)) на
E тогда и только тогда, когда z1 − z2 ∈ L;

4. отображение, которое люой точке z /∈ L ставит в соответствие точку
(℘(z), ℘′(z)) на E, а любой точке z ∈ L — точку в бесконенчости O, даёт вза-
имно однозначное соответсвие между E и факторгруппой C/L комплексной
плоскости по подгруппе L;

5. это взаимно однозначное соответствие есть изоморфизм абелевых
групп, иными словами, если z1 соответсвует точке P ∈ E, а z2 — точке Q ∈ E,
то z1 + z2 соотвествует точке P +Q.

Эллиптические кривые над Fq. Обозначим3 #E(Fq) конечное число раци-
ональных точек на эллиптической кривой E. Ожидаемое число точек кривой
близко к q + 1 и можноположить

#E(Fq) = q + 1− t,

где «дефект» t называется следом отображения Фробениуса в q.
Теорема 1.2(Теорема Хассе) След отображения Фробениуса удовлетво-

ряет неравенству |t| 6 2
√
q.

Эндоморфизм Фробениуса ϕ — эндомофризм группы E над алгебраиче-
ским замыканием Fq.

Существует два частных случая криптографически непригодных эллип-
тических кривых:

а) Кривая E(Fq) называется аномальной, если её след Фробениуса равен
1, то есть#E(Fq) = q. Эта кривая особенно неудобна, когда q — простое
число.

б) Кривая E(Fq) называется суперсингулярной, если характеристика p по-
ля Fq делит след Фробениуса t. Такиз кривых также стараются избегать
в криптографии. При q = p суперсингулярная кривая насчитывает p+1

точку, поскольку t = 0 в этом случае. Если же q = pr, то t у суперсин-
гулярных кривых может принимать значения. При нечётном r: t = 0,

3Смарт, Н. Криптография / Н. Смарт — М.: Техносфера, 2005. — 528 с.
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t2 = 2q и t2 = 3q. При чётном r: t2 = 4q, t2 = q, если p = 1 (mod 3), и
t = 0, если p 6= 1 (mod 4).

Инвариантами кривой называются такие выражения, составленные из ко-
эффициентов её уравнения, которые не меняются при переходе от одной пря-
моугольной декартовой системы координат к другой такой же системе.

j-инвариантом4 на эллиптической кривой называется значение, которое
вычисляется по формуле j = c34/4 где c4 число, зависящее от коэффициентов
уравнения эллиптической кривой, а 4 дескриминант.

Порядок точки. Фиксируем положительное число N . Пусть

f(x) = ax3 + bx2 + cx+ d = a(x− e1)(x− e2)(x− e3)

— кубический полином с коэффициентами в поле K характеристики, не рав-
ной 2. Предположим, что корни этого полинома различны. Опишем коор-
динаты точек порядка N на эллиптической кривой y2 = f(x). При N = 2

точки порядка N — это бесконечная точка и точки (ei, 0), i = 1, 2, 3. Пред-
положим, что N > 2. Если N нечётно, то под нетривальной точкой порядка
N подразумевается точка P 6= 0, такая, что NP = 0. Если N чётно, то под
нетривиальной точкой порядка N подразумевают точку P 6= 0, такую, что
NP = 0, но 2P 6= 0.

Предложение 2.1 Пусть K ′ — любое расширение поля K. Пусть
σ : K ′ → σK — любой изоморфизм полей, оставляющий точки поля K на
месте. Пусть P ∈ P2

K ′ — точка на эллиптической кривой y2 = f(x), точный
порядок которой равен N . Тогда точка σP имеет точный порядок N , где для
P = (x, y, z) ∈ P2

K ′ обозначаем σP = (σx, σy, σz) ∈ P2
σK ′

Теорема 2.1(Теорема Вейля) Дзета-функция есть рациональная функ-
ция от T вида

Z(T ;E/Fq) =
1− aT + qT 2

(1− T )(1− qT )
, (2.1)

где от эллиптической кривой E зависит лишь целое число a. Значение a
связано с числом N = N1 соотношением N = q + 1 − a. Кроме того, дис-
криминант квадратного трёхчлена в числителе отрицателен, a2 < 4q, таким

4Кнэпп, Э. Эллиптические кривые / Э. Кнэпп — М.: Факториал Пресс, 2004. — 488 с.
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образом, этот трёхчлен имеет два комплексно сопряжённых корня α и β, оба
по модулю равные √q.

Замечание 2.1 Если записать числитель (2.1) в виде (1−αT )(1− βT ) и
затем взять производную от логарифмов обеих частей, можно убедится, что
формула (2.1) эквивалентна последовательности соотношений

Nr = qr + 1− αr − βr, r = 1, 2, ...

Так как α и β, также как и a, определяются значением N = N1, то число
точек над Fq однозначно определяет число точек над любым его расшире-
нием. Таким образом, теорему Вейля можно использовать для нахождения
числа точек над расширениями высокой степени.

Метод нахождения числа точек в общем случае. Дана эллиптическая кри-
вая E(K), заданная общим уравнением y2+a1xY +a3y = x3+a2x

2+a4x+a5.
Пусть N — число точек эллиптической кривой E(K).

1. Выберем точку P ∈ E(K). Для этого выбираем случайную
x-координату x0 ∈ K так, чтобы существовала y-координата y0 ∈ K,
удовлетворяющая уравнению кривой.

2. Находим целое число k ← [ 4
√
2q].

3. Вычисляем точки P , 2P , 3P , ..., kP и отсортировываем полученную
базу данных по x-координате (при этом оказываются известными и точки
−P , −2P , −3P , ..., −kP ).

4. Вычисляем точки Q← (2k+1)P , R← (q+1)P , после чего сравниваем
поочерёдно x-координаты точек R, R±Q, R± 2Q,...,R± kQ с базой данных
(равенство означает, что R + dkP = eP для некоторых целых d, e). Отсюда
находим предполагаемое число точек: N ← q + 1 + dk − e

Алгоритм Чуфа для вычисления числа N точек эллиптической кривой E
над полем K использует вычисления в полях функций K[x, y]/(E(K), fli(x)),
где (E(K))— идеал, задающий кривую, fli(x)— полином деления, и содержит
три шага:

1. вычисление набора попарно взаимно простых чисел {li} и соответсву-
ющих полиномов деления в кольце K[x];
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2. нахождение вычетов числа T = q + t − N по модулям малых взаимно
простых чисел li;

3. восстановление числа точек по китайской теореме об остатках.
Криптосистеы с открытым ключом. Пусть P и C множества всех воз-

можноых элементов открытого текста и шифртекста. И пусть функции f ,
f−1 имеют вид:

C ≡ P + b (mod N)

P ≡ C − b (mod N)

где P и C элементы из соответствующих множест, b сдвиг, по которому осу-
ществляется преобразование, N основание системы счисления.

По определению, криптосистема с открытым ключом обладает свойством,
что знание шфирующего преобразования не позволяет по ключу шифрова-
ния найти ключ дешифрования, избежав очень длинных вычислений. То есть
f : P → C легко вычисляется, если ключ KE известен, но вычислять зна-
чения обратной функции f−1 : C → P очень сложно. Иными словами, с
точки зрения вычисляемости, функция f является необратимой без ключа
KD. Такая функция называется функцией с замком.

Однонаправленной5 называется такая функция f , для которой легко опре-
делить значение функции y = f(x), но практически невозможно отыскать
для заданного y такое x, что y = f(x).

Смысл названия «открытый ключ» состоит в том, что информация, ис-
пользуемая при отправке шифрованных сообщений — ключ шифрования KE

— может быть раскрыта без риска, что кто-либо получит возможность про-
честь открытый текст. Пусть имеется группа пользователей криптосистемы,
каждый из которых хочет иметь возможность принимать и дешифровать
конфиденциальные сообщения от любого другого без участия третьих лиц.

Заметим, что система с открытым ключом позволяет двум участникам
начать секретный обмен данными без предворительного контакта, без взаим-
ной проверки и без предворительного обмена какой-либо информацией. Вся
необходимая информация для посылки шифрованного сообщения является
общедоступной.

5Шаньгин, В.Ф. Информационная безопасность / В.Ф. Шаньгин — М.: ДМК Пресс, 2014. — 702 с.
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Криптосистема6 RSA, предложенная в 1977 году Р.Ривестом, Э.Шамиром
и Л.Адлеманом и названная по первым буквам фамилий авторов, широко
используется для шифрования с открытым ключом и цифровой подписи.

Безопасность криптосистемы7 RSA основана на том, что по заданным це-
лым числам найти их произведение не составяет больших трудов, а разло-
жить длинное целое число на простые множетили гораздо сложнее.

Каждому пользователю системы RSA соответствует пара открытый и за-
крытый ключ. Для выработки ключей нужно сгенерировать большие про-
стые числа p и q, p 6= q, вычислить их произведение n = pq и функцию
Эйлера

ϕ(n) = (p− 1)(q − 1).

Функция Эйлера8 ϕ(a) определяется для всех a и представляет собою
число чисел ряда 0, 1, ..., a− 1, взаимно простых с a.

Далее необходимо выбрать целое число e, 1 < e < ϕ(n) − 1, взаимно
простое с ϕ(n), и вычислить d — мультипликативно обратное к e по модулю

ϕ(n) : d ≡ e1 (mod ϕ(n)),

то есть ed ≡ 1 (mod ϕ(n)). Числа e и d называются открытым и закрытым
показателями соотвественно. Пара (n, e) является открытым ключом, число
d является секретным ключом. Множетили p и q должны храниться в секрете
или могут быть уничтожены после выработки ключей.

Пусть (n, e) — открытй ключ пользователя A. Чтобы передать пользова-
телюA зашифрованнное сообщениеm, 1 < m < n, пользовательB вычисляет
шифртекст c ≡ me (mod n). Для расшифрования шифртекста c пользователь
A возводит его в степень d: m ≡ cd (mod n).

Лемма 3.1 Задача разложения на множетели числа n = pq и задача
вычисления функции Эйлера ϕ(n) полиномиально эквивалентны.

6Гатченко, Н.А. Криптографическая защита информации / Н.А. Гатченко, А.С. Исаев, А.Д. Яковлев
— СПб.: НИУ ИТМО, 2012. — 142 с.

7Маховенко, Е.Б. Теоретико-числовые методы в криптографии: Учебное пособие / Е.Б. Маховенко —
М.: Гелиос АРВ, 2006. — 320 с.

8Иванов, Б.Н. Дискретная математика. Алгоритмы и программы: Учеб. пособие. / Б.Н. Иванов — М.:
Лаборатория Базовых Знаний, 2001. — 288 с.
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Теорема 3.1 Задача вычисления закрытого показателя d сводится с по-
линомиальной сложностью к задаче вычисления функции ϕ(n).

В общем случае задача дешифрования системы RSA эквивалентна задаче
извлечения корня степени e по модулю n.

Алгоритм разложения на множители по известным показателям RSA.
Вход. Число n, показатели e, d, где ed ≡ 1 (mod ϕ(n)).
Выход. Такие числа p и q, что n = pq.
1. Представить число N = ed− 1 в виде N = 2fs, где число s нечётное.
2. Выбрать случайное число a, 2 6 a 6 n−2, и вычислить u← as (mod n),

v ← u2 (mod n).
3. Пока v 6= 1, полагать u← v, v ← u2 (mod n).
4. При u = −1 вернуться на шаг 2. В противном случае вычислить

p← НОД(u− 1, n), q ← НОД(u+ 1, n).

5. Результат: p, q.
Пусть p — нечётное простое число. Рассмотрим мультипликативную груп-

пу кольца Z/pZ. Она циклична, то есть существуют такие числа a, что срав-
нение

ax ≡ b (mod p) (3.1)

разрешимо относительно x при любом b ∈ Z, не делящемся на p. Числа a с
этим свойством называются первообразными корнями, и количество их равна
ϕ(p−1), где ϕ—функция Эйлера. Целое x, удовлетворяющее сравнению (3.1),
называется индексом или дискретным логарифмом числа b.

По заданному числу x достаточно быстро можно вычислить ax mod p.
Однако, выполнение обратной операции, вычисление по заданному b его дис-
кретного логарифма является очень сложной в вычислительном отношении
задачей.

Криптосистемы на эллиптических кривых. Для эллиптических кривых
аналогом умножения двух элементов группы F∗q служит сложение двух то-
чек эллиптической кривой E, определённой над Fq. Таким образом, аналог
возведения в степень k элемента из F∗q — это умножение точки P ∈ E на
целое число k. Возведение в k-ю степень в F∗q методом повторного возведения
в квадрат можно осуществить за O(logklog3q) двоичных операций.
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Предложение 4.1 Пусть эллиптическая кривая E определена уравне-
нием Вейерштрасса y2 = x3 + ax + b над конечным полем Fq. Если задана
точка P на E, то координаты kP можно вычислить за O(logklog3q) двоичных
операций.

Замечание 4.1 Оценки времени работы в приведённом выше предложе-
нии являются наилучшими, особенно для конечных полей характеристики
p = 2.

Замечание 4.2 Если известно число N точек на эллиптическоей кривой
E и если k > N , то в силу равенства NP = 0, можно заменить k его наи-
меньшим неотрицательным вычетом по модулю N . В таком случае оценка
заменяется на O(log4q).

Пусть E — эллиптическая кривая над Fq и B — точка на E. Задачей
дискретного логарифмирования с основанием B на E называется задача на-
хождения для данной точи P ∈ E такого числа x ∈ Z, если оно существует,
что xB = P .

Основные преимущества криптосистем на эллиптических кривых заклю-
чается в том, что не известны субэкспоненциальные алгоритмы вскрытия
этих систем, если в них не использются суперсингулярные кривые, а также
кривые, порядки которых делятся на большое простое число.

Аналог ключевого обмена Диффи-Хеллмана. Пользователи C и D для
начала открыто выбирают точку B ∈ E в качестве основания. B играет
ту же роль, что и образующий g в системе Диффи-Хеллмана для конечных
полей. Однако, не требуется, чтобы точка B была образующим элементом в
греппе точек кривой E. Эта группа может и не быть цилической. Даже если
она циклическая, нет необходимости тратить время на проверку того, что B
это образующий элемент. Предположим, что B — взятая открыто точка на E
весьма большого порядка, который равен либо N , либо большому делителю
N , где N — число точек кривой E.

Чтобы образовать ключ, пользователь C случайным образом выбирает
целое число a, сравнимое по порядку величины с q, которое близко к N . Это
число пользователь C держит в секрете. Пользователь C вычисляет aB ∈ E и
передаёт эту точку открыто. ПользовательD делает то же самое: он выбирает
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случайно b и открыто передаёт bB ∈ E. Тогда используемый ими серкетный
ключ — это P = abB ∈ E. Оба пользователя могут вычислить этот ключ.

Аналог системы Мэсси-Омуры. Это криптосистема9 с открытым ключом
для передачи элементов сообщения m, которые по предположению представ-
лены точками Pm открытой фиксированной эллиптической кривой E над Fq,
q берётся большим. Предполагается также, что общее число N точек на E
вычислено и не скрыто. Каждый пользователь системы секретно выбирает
такое целое случайное число e между 1 и N , что НОД(e,N) = 1. Используя
алгоритм Евклида, он находит затем обратное e−1 к числу e по модулю N ,
то есть такое целое d, что de ≡ 1 (mod N). Если один пользователь хочет
прислать другому сообщение Pm, то он сначала посылает ему точку eAPm

(индекс A указывает на первого пользователя). Это ничего не говорит друго-
му пользователю, который не зная ни eA, ни dA, не может восстановить Pm.
Однако, не придавая этому значения, он умножает её на своё eB и посылает
обратно первому пользователю eBeAPm. На третьем шаге первый пользова-
тель должен частично раскрыть своё сообщение, умножив eBeAPm на dA. Так
как NPm = O и dAeA ≡ 1 (mod N), при этом получается точка eBPm, кото-
рую первый пользователь возвращает второму. Тот теперь может прочитать
сообщение, умножив точку eBPm на dB.

Аналог системы Эль-Гамаля. Это — другая система с открытым ключом
для передачи сообщений Pm. Как и в системе Мэсси-Омуры, поле Fq, опре-
делённая над ним эллиптическая кривая E, точка на данной кривой B —
известны. Каждый из пользователей выбирает случайное целое число a, ко-
торое держит в секрете, затем находит и делает общедоступной точку aB.

Чтобы послать сообщение Pm, пользователь выбирает случайно целое
число k и посылает пару точек (kB, Pm + k(aBB)), где aBB — откры-
тый ключ другого пользователя, которому отправляется сообщение. Что-
бы прочитать сообщение, получатель умножает первую точку из пары на
своё серктеное число aB и вычитает результат умножения из второй точки:
Pm + k(aBB)− aB(kB) = Pm.

9Онацкий, А.В. Ассиметричные методы шифрования. Модуль 2. Криптографические методы защиты
информации в телекоммуникационных системах и сетях / А.В. Оницкий, Л.Г. Йона — Одесса: ОНАС им.
А.С. Попова, 2010. — 148 с.
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Заключение. В результате данной работы были рассмотрены особенности
использования эллиптических кривых и их характеристик в создании крип-
тосистем. Данный метод позволяет на стороне пользователя производить бо-
лее быстрые операции по созданию ключей и преобразовании информации,
подготовке её к передаче. При этом сохраняется надёжность системы, а от-
стуствие точных алгоритмов решения задачи дискретного логарифмирования
на эллиптических кривых даёт перспективы использвание их в дальнейшем.

Одним из достоинств эллиптических кривых также является то, что они
доставляют большое число возможных групп. Можно изменить как основное
поле, так и коэффициенты уравнения кривой.

Многие используемые криптосистемы ранее в создании своих ключей
могут использовать алгоритмы, базирующиеся на свойствах эллиптических
кривых. Тем не менее для реализации данной задачи потребуется правиль-
но выбрать вид кривой, так как не каждая кривая подойдёт для реализации
криптосистемы.
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