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Общая характеристика работы

Актуальность темы. Диссертация посвящена обратным спектраль-
ным задачам для оператора Штурма - Лиувилля с сингулярным потенци-
алом на графах. Обратные задачи спектрального анализа заключаются
в определении операторов по некоторым их спектральным характери-
стикам. Подобные задачи играют фундаментальную роль в различных
разделах математики и имеют много приложений в механике, физике,
электронике, геофизике, метеорологии и других областях естествозна-
ния и техники. Интерес к этой тематике постоянно увеличивается бла-
годаря появлению все новых приложений, и в настоящее время теория
обратных задач интенсивно развивается во всем мире.

Наиболее полные результаты в спектральной теории дифференциаль-
ных операторов, и в частности в теории обратных задач, получены для
дифференциального оператора Штурма - Лиувилля

`y := −y′′ + q(x)y. (1)

Первые исследования по спектральной теории операторов Штурма - Ли-
увилля были выполнены Д. Бернулли, Ж. Даламбером, Л. Эйлером,
Ж. Лиувиллем и Ж. Штурмом в связи с решением уравнения, описы-
вающего колебания струны. Интенсивное развитие спектральная теория
для различных классов операторов получила в XX веке. Глубокие идеи
здесь принадлежат Д. Бирхгофу, Г. Вейлю, Д. Гильберту, Д. Нейману,
В.А. Стеклову, М. Стоуну и другим математикам. Что касается обрат-
ных спектральных задач, то основные результаты и методы здесь полу-
чены во второй половине XX века. Отметим работы Р. Билса, Г. Борга,
М.Г. Гасымова, М.Г. Крейна, Б.М. Левитана, Н. Левинсона, З. Л. Лей-
бензона, В.А. Марченко, Л.А. Сахновича, Л.Д. Фаддеева, И.Г. Хачатря-
на, В.А. Юрко и других. Подробный обзор полученных результатов и
библиографию см. в монографии В.А. Юрко1. Созданные методы позво-

1Юрко В.А. Введение в теорию обратных спектральных задач, М.: Физматлит, 2007.
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лили решить целый ряд важных прикладных задач в различных обла-
стях естествознания и техники. Отметим замечательный метод интегри-
рования нелинейных эволюционных уравнений математической физики,
связанный с использованием обратных спектральных задач2. Много при-
ложений связано также с обратными задачами для дифференциальных
уравнений высших порядков, для систем дифференциальных уравнений,
для дифференциальных уравнений с особенностями и точками поворо-
та, для нелокальных операторов, для дифференциальных уравнений с
нелинейной зависимостью от спектрального параметра, для дифферен-
циальных уравнений на графах и для других классов обратных задач.

Наиболее полные результаты в теории обратных задач известны для
дифференциального оператора Штурма-Лиувилля (1). Первый резуль-
тат в этом направлении принадлежит В.А. Амбарцумяну3. Он показал,
что если собственные значения краевой задачи

−y′′ + q(x)y = λy, y′(0) = y′(π) = 0

суть λk = k2, k ≥ 0, то q = 0. Однако результат Амбарцумяна является
исключением, и одного спектра, вообще говоря, недостаточно для одно-
значного определения потенциала q(x) . Впоследствии Г. Борг4 доказал,
что два спектра дифференциальных операторов Штурма-Лиувилля с од-
ним общим краевым условием однозначно определяют функцию q. Важ-
ную роль в спектральной теории операторов Штурма-Лиувилля сыграл
оператор преобразования. К решению обратных задач оператор преоб-
разования первым применил В.А. Марченко5. Он доказал, что диффе-
ренциальный оператор (1), заданный на полуоси или конечном интер-
вале, однозначно определяется заданием спектральной функции. Метод

2Захаров В.Е., Манаков С.В., Новиков С.П., Питаевский Л.П. Теория солитонов: метод обратной
задачи, М.: Наука, 1980, 320 с.

3Ambarzumian V.A. Ueber eine Frage der Eigenwerttheorie, Zs.f.Phys. - 1929. - Vol. 53. - P. 690-695.
4Borg G. Eine Umkehrung der Sturm-Liouvilleschen Eigenwertaufgabe, Acta Math. - 1946. - Vol. 78.

- P. 1-96.
5Марченко В.А. Некоторые вопросы теории одномерных линейных дифференциальных опера-

торов второго порядка, I, Труды Моск. матем. общества, Т.1, 1952, С. 327-420.
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оператора преобразования использовался и в фундаментальной работе
И.М. Гельфанда, Б.М. Левитана6, в которой были получены необходи-
мые и достаточные условия и метод восстановления дифференциального
оператора Штурма-Лиувилля по его спектральной функции.

Большинство приложений обратных задач связано с восстановлени-
ем потенциала по функции Вейля или ее аналогам. Первым кто изучал
обратные задачи по функциям Вейля был А.Н. Тихонов 7. Задание функ-
ции Вейля равносильно заданию спектральной функции, однако обрат-
ная задача по функции Вейля и ее аналогам является более естественной
как для оператора Штурма-Лиувилля, так и для других более слож-
ных классов операторов. Метод оператора преобразования, сыгравший
важную роль для классических операторов Штурма-Лиувилля, оказался
неэффективным для других более сложных классов операторов. Более
эффективным и универсальным является предложенный В.А. Юрко ме-
тод спектральных отображений8, связанный с развитием идей метода
контурного интегрирования и использованием аппарата теории анали-
тических функций. Этим методом, в частности, была построена теория
решения обратных задач для дифференциальных операторов высших
порядков

`1y := y(n) +
n−2∑
k=0

qk(x)y(k), (2)

дифференциальных систем с произвольным расположением характери-
стических чисел, дифференциальных уравнений с особенностями и точ-
ками поворота, дифференциальных операторов на пространственных се-
тях и других классов операторов. При этом в качестве основных спек-
тральных характеристик вводились и изучались объекты, являющиеся

6Гельфанд И.М., Левитан Б.М. Об определении дифференциального уравнения по его спектраль-
ной функции, Известия АН СССР. Сер. матем. - 1951. - Т. 15. - С. 309-360.

7Тихонов А.Н. О единственности решения задачи электроразведки, ДАН СССР. 1949. V. 69, N6.
С. 797-800.

8Yurko V. Method of Spectral Mappings in the Inverse Problem Theory. Inverse and Ill-posed Problems
Series, Utrecht: VSP, 2002.
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аналогами функции Вейля для оператора (1).
Важную роль в теории обратных спектральных задач играют опера-

торы Штурма-Лиувилля с сингулярными потенциалами, а именно опе-
раторы (1) с q ∈ W−1

2 . Обратные задачи для таких операторов на интер-
вале изучались в работах А.М. Савчука, А.А. Шкаликова, Р.О. Гринева,
Я.В. Микитюка и других.

Дифференциальные операторы на графах (пространственных сетях)
часто возникают в естествознании и технике. Обратные задачи для опе-
ратора Штурма-Лиувилля на графах с суммируемым потенциалом до-
статочно подробно изучены. В частности, в работах М.И. Белишева9 и
В.А. Юрко10 получено решение обратной задачи на деревьях. Наличие
циклов существенно усложняет решение обратной задачи по сравнению
с деревьями. Полное решение обратных задач для дифференциальных
операторов на произвольных компактных графах получено В.А. Юрко11.
Для решения таких обратных задач применялся метод спектральных
отображений.

Обратные задачи для оператора Штурма-Лиувилля на графах с син-
гулярным потенциалом являются существенно более трудными и в на-
стоящее время мало изучены. Отметим работу Г. Фрейлинга, М.Ю. Иг-
натьева и В.А. Юрко 12, где рассматривается граф-звезда, а также ра-
боты Н.П. Бондаренко и Ц.Ф. Янга13, где изучаются неполные обратные
задачи.

9Belishev M. I. Boundary spectral inverse problem on a class of graphs (trees) by the BC method,
Inverse Problems 20, 2004. 647-672 pp.

10Yurko V.A., Inverse spectral problems for Sturm-Liouville operators on graphs, Inverse Problems 21
(2005), 1075-1086.

11В.А. Юрко. Обратные спектральные задачи для дифференциальных операторов на простран-
ственных сетях, УМН, Т. 71, №3(429), 2016, 149-196.

12Freiling, G., Ignatiev, M. and Yurko, V. An inverse spectral problem for Sturm-Liouville operators
with singular potentials on star-type graph, Proc. Symp. Pure Math. 77 (2008), 397-408.

13Bondarenko N.P. A 2-edge partial inverse problem for the Sturm-Liouville operators with singular
potentials on a star-shaped graph, Tamkang Journal of Mathematics, Vol. 49, No. 1., 2018, 49-66 pp.

Bondarenko N.P. and Yang C.-F. A partial inverse problem for the Sturm-Liouville operator on the
lasso-graph, Inverse Problems and Imaging, Vol. 13, No. 1., 2019, 69 p.
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В данной работе исследуются обратные спектральные задачи для опе-
раторов Штурма-Лиувилля с сингулярными потенциалами на графах.
При этом основное внимание уделяется циклам. В Главе 1 рассмотре-
но восстановление оператора с сингулярным потенциалом по спектрам
и некоторым специальным знакам на графе с одним циклом. Основным
результатом этой главы является получение конструктивной процедуры
восстановления, а также доказательство единственности решения обрат-
ной задачи. При этом важную роль играют асимптотические представле-
ния спектра и формулы восстановления характеристической функции. В
Главе 2 исследовано восстановление оператора с сингулярным потенциа-
лом на произвольном компактном графе. При этом рассмотрена другая
постановка обратной задачи и в качестве основных спектральных ха-
рактеристик вводятся объекты, являющиеся аналогами функции Вейля
для классических операторов Штурма-Лиувилля. Получена конструк-
тивная процедура решения обратной задачи, а также доказана теорема
единственности. В Главе 3 исследована обратная задача для дифферен-
циальных операторов Штурма-Лиувилля с замороженным аргументом
`2y := −y′′(x) + q(x)y(a) . Получены необходимые и достаточные усло-
вия разрешимости, конструктивный алгоритм решения обратной задачи,
а также доказана единственность решения. Дифференциальные операто-
ры такого вида рассматривались в некоторых работах Л.П. Нижника14,
однако, общая теория решения такого класса обратных задач еще не по-
строена, и имеются лишь отдельные фрагменты, не составляющие общей
картины. Обратные задачи для оператора Штурма-Лиувилля с заморо-
женным аргументом тесно связаны с обратными задачами на графах.

Цель работы. Целью диссертационной работы является получение
новых результатов в спектральной теории и теории обратных задач для
операторов Штурма-Лиувилля с сингулярными потенциалами, заданных
на графах, а также для операторов Штурма-Лиувилля с замороженным
аргументом.

14Nizhnik L.P., Inverse nonlocal Sturm-Liouville problem, Inverse Probl. 26 (2010) 125006.
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Научная новизна. Результаты работы являются новыми и состоят
в следующем:

1. Получена конструктивная процедура восстановления операторов
Штурма-Лиувилля с сингулярными потенциалами на графе с циклом по
спектрам и некоторым специальным знакам, а также доказана теорема
единственности.

2. Получена конструктивная процедура восстановления операторов
Штурма-Лиувилля с сингулярными потенциалами на произвольном ком-
пактном графе по функциям Вейля, а также доказана теорема един-
ственности.

3. Получена конструктивная процедура восстановления оператора
Штурма-Лиувилля с замороженным аргументом по спектрам, получены
необходимые и достаточные условия разрешимости обратной задачи, а
также доказана теорема единственности.

Методы исследования. В работе используются методы веществен-
ного, комплексного и функционального анализов, методы теории диффе-
ренциальных уравнений, методы теории аналитических функций и ин-
тегральных уравнений. Для решения обратной задачи для операторов
Штурма - Лиувилля применяется развитие метода спектральных отоб-
ражений, в основе которого лежит метод контурного интегрирования
Коши - Пуанкаре.

Достоверность результатов. Все результаты диссертации получе-
ны с помощью строгих математических доказательств.

Теоретическая и практическая значимость. Работа носит тео-
ретический характер. Полученные результаты могут быть использованы
в спектральной теории операторов и ее приложениях. На основе разра-
ботанных конструктивных процедур могут быть построены численные
методы решения обратных спектральных задач для операторов Штурма
- Лиувилля с замороженным аргументом на интервале и для операторов
Штурма - Лиувилля с сингулярными потенциалами на графах с циклом
и произвольных компактных графах. Разработанный метод решения об-
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ратных задач, а также используемые идеи могут быть применены для
решения обратных задач для других классов операторов, в том числе
заданных на графах.

Апробация работы. Результаты работы прошли апробацию на 18-й
Саратовской зимней школе "Современные проблемы теорий функций и
их приложения"(Саратов, 2016), на 19-й Саратовской зимней школе "Со-
временные проблемы теорий функций и их приложения"(Саратов, 2018),
на Воронежской весенней математической школе "Понтрягинские чте-
ния - XXVI"(Воронеж, 2015), на Воронежской весенней математической
школе "Современные методы теории краевых задач - Понтрягинские
чтения-XXVII"(Воронеж, 2016) на Крымской осенней математической
школе-симпозиуме (Крым, 2016), на Воронежской весенней математиче-
ской школе "Современные методы теории краевых задач - Понтрягин-
ские чтения-XXVIII"(Воронеж, 2017) на Международной научной кон-
ференции "Современные проблемы теорий функций и их приложения"
посвященной 80-летию академика В.А.Садовничего (Москва, 2019), на
научных семинарах кафедры математической физики и вычислительной
математики (под руководством профессора В.А. Юрко).

Публикации. Результаты диссертации опубликованы в 8 работах.
Статьи [3, 5, 7, 8] опубликованы в журналах, включенных в список ВАК
РФ. Из них 2 работы выполнены без соавторов. Основные результаты
совместных работ, включенных в диссертацию, получены лично автором.

Структура и объем диссертации. Диссертация состоит из введе-
ния, трех глав, разбитых на 11 параграфов и списка литературы, содер-
жащего 82 наименования. Общий объем - 104 страницы.

Содержание работы

Во введении обосновывается актуальность темы, кратко описывает-
ся приведенная литература и перечисляются основные результаты дис-
сертации.
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Введем в рассмотрение несколько определений. Множество ребер неко-
торого графа G будем обозначать как E(G) , а множество вершин бу-
дем обозначать как V (G) . Также рассмотрим отображение µ , которое
в соответствие каждому ребру e будет ставить упорядоченную пару вер-
шин e± ∈ V (G) : µ(e) := [e−, e+] , где вершина e− соответствует началу
ребра, а e+ - концу. Множество инцидентных вершине v ∈ V (G) ре-
бер обозначим как I(v,G) . Вершину v будем называть граничной, если
|I(v,G)| = 1 . Множество граничных вершин обозначим как V B(G) .
Множество внутренних вершин обозначим как V I(G) . Ребро e будем
называть граничным, если либо e+ ∈ V B(G) , либо e− ∈ V B(G) . Мно-
жество граничных ребер обозначим как EB(G) . Множество внутренних
ребер обозначим как EI(G) . Цепь ребер {e1, ..., en} называется цик-
лом, если образует замкнутую кривую. Множество ребер, принадлежа-
щих хотя бы одному циклу, обозначим как EC(G) . Длину ребра e будем
обозначать как le . На ребрах e ∈ E(G) , зададим уравнения Штурма-
Лиувилля с сингулярными потенциалами:

−
(
y[1]
e

)′ − σe(xe)y[1]
e − σ2

e(xe)ye = λye(xe), xe ∈ (0, le), (3)

где y
[1]
e := y′e−σe(x)ye - это квазипроизводная и qe(xe) = σ′e(xe) (произ-

водная рассматривается в смысле обобщенных функций), а σe ∈ L2[0, le] .
Таким образом, в (3) фигурирует оператор ` c q ∈ W−1

2 , представлен-
ный в другом виде. Введем обозначения

ye|v :=

{
ye(0), v = e+

ye(le), v = e−
, ∂eye|v :=

{
y

[1]
e (0), v = e+

−y[1]
e (le), v = e−

(4)

Во внутренней вершине v зададим следующие условия склейки, которые
будем называть MC(v,G) :

ye|v = yr|v, e, r ∈ I(v,G),
∑

e∈I(v,G)

∂eye|v = 0. (5)

Под MC(G) будем понимать условия склейки MC(v,G) , v ∈ V I(G) .
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Зафиксируем некоторое ребро k ∈ EC(G) и в вершине u = k+ рас-
смотрим условия склейки MCk(u) для случая k+ 6= k− :

ye|u = yr|u, e, r ∈ I(u,G)\{k},
∑

e∈I(u,G)\{k}

∂eye|u = 0,

и для случая k+ = k− :

yk|k− = ye|u = yr|u, e, r ∈ I(u)\{k},∑
e∈I(u,G)\{k}

∂eye|u + ∂kyk|k− = 0.

Под MCk(G) будем понимать условия склейки MC(v) в v ∈ V I(G)\{u} ,
и условия MCk(u) в вершине u .

Для каждого ребра e ∈ EB(G) определим

µB(e,G) :=

{
e+, если e+ ∈ V B(G)

e−, если e− ∈ V B(G)
(6)

Пусть ϕer , e ∈ E(G) , r ∈ EB(G) , будут решениями уравнения
(3), удовлетворяющими условиям склейки MC(G) , а также краевым
условиям:

∂eϕer|µB(e,G) = δer, e ∈ EB(G), (7)

Функцию Me(λ,Garb) := ϕee|µB(e) , e ∈ EB(Garb) мы назовем функцией
Вейля для (3) относительно ребра e .. Пусть ϕer , e ∈ E(G) , r ∈ EC(G) ,
будут решениями уравнения (3), удовлетворяющими условиям склейки
MCr(G) , а также краевым условиям:

∂eϕer|µB(e) = 0, e ∈ EB(Garb), ∂rϕrr|r+ = 1,

Функцию Mr(λ,Garb) := ϕrr|r+ , r ∈ EC(Garb) мы назовем функцией
Вейля для (3) относительно ребра r .

Также будем рассматривать различные краевые задачи для уравне-
ния (3) с различными условиями склейки. Введем в рассмотрение ре-
шения Ce(x, λ) и Se(x, λ) , e ∈ E(Gc) , уравнения (3) с начальными
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условиями

Ce(0, λ) = S [1]
e (0, λ) = 1, C [1]

e (0, λ) = Se(0, λ) = 0.

Понятно, что решение ϕer представимо как

ϕer(xe, λ) = Aer(λ)Se(xe, λ) +Ber(λ)Ce(xe, λ).

Если L - это некоторая краевая задача, то, подставив это представле-
ние в ее краевые условия, получим систему алгебраических уравнений,
определителем которой будем считать характеристическую функцию
∆(λ, L) . Под ∆0(λ, L) будем понимать характеристическую функцию
некоторой краевой задачи L для операторов Штурма-Лиувилля с нуле-
вым потенциалом.

Первая глава посвящена исследованию операторов Штурма - Ли-
увилля с сингулярными потенциалами, заданных на графе с циклом. Под
графом с циклом будем понимать некоторый граф Gc , такой что

V B(Gc) = {vj}pj=1, V
I(Gc) = {v0},

E(Gc) = {ej}pj=0, µ(ej) := [v0, vj], j = 0, p

Таким образом, граф Gc образуется присоединением одного цикла, со-
стоящего из ребра e0 , к графу-звезде. Также будем считать, что длины
ребер графа соизмеримы. Рассмотрим краевую задачу L1(Gc) для урав-
нения (3) с условиями склейки MC(Gc) и граничным условиями

y[1]
e (0) = 0, e ∈ EB(Gc). (8)

Последовательность собственных значений задачи L1(Gc) обозначим Λ .
Наряду с L1(Gc) рассматриваются краевые задачи L1

r(Gc) , r ∈ EB(Gc) ,
для уравнения (3) с условиями MC(Gc) и граничными условиями

y[1]
e (0) = 0, e ∈ EB(Gc)\{r}, yr(0) = 0. (9)

Посредством Λr обозначим последовательность собственных значений
задачи L1

r(Gc) .
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Также под `1(e) будем понимать краевую задачу для уравнения (3)
на ребре e с условием Дирихле на обеих концах ребра e , а под `1

e(e)

будем понимать краевую задачу для уравнения (3) на e с граничными
условиями Неймана в e− и с граничными условиями Дирихле в e+ .

Нули функции ∆(λ, `1(e0)) обозначим как {zn}n≥1 . Также обозна-
чим

ωn := signQ(zn), Ω = {ωn}n≥1, Q(λ) := Ce0(le0, λ)− S [1]
e0

(le0, λ).

В параграфе 1.1 введем в рассмотрение следующую обратную задачу
Обратная Задача 1.1. Даны Λ , Λr , r ∈ EB(Gc) , Ω , построить

потенциал q на Gc .
В параграфе 1.2 рассматриваются спектры краевых задач и восста-

новление характеристической функции. Вид собственных значений кра-
евой задачи L1(Gc) формулируется в следующей лемме

Лемма 1.2.1 Собственные значения краевой задачи L1(Gc) :

√
λnk =: ρnk =

 τn+ εnk, k = 0, µ0 − 1, n ∈ N,

|τn+ αk|+ εnk, k = µ0,m, n ∈ Z,
(10)

где εnk ∈ l2µk, τ ∈ R, µk ∈ N , а µ0 - это кратность нулевого собствен-
ного значения краевой задачи L1(Gc) с нулевым потенциалом. Саму
характеристическую функцию можно восстановить из спектра, исполь-
зуя теорему Адамара:

Теорема 1.2.1. Задание спектров Λ и Λr единственным образом
определяет характеристические функции по формулам

∆(λ, L1(Gc)) = (−1)µ0
∂µ0

∂λµ0
∆0(λ, L

1(Gc))
∣∣∣
λ=0
·

·
∞∏
n=0

µ0−1∏
k=0

λnk − λ
λ01
nk

∞∏
n=−∞

m∏
k=µ0

λnk − λ
λ01
nk

.

∆(λ, L1
r(Gc)) = (−1)µ

r
0
∂µ

r
0

∂λµ
r
0
∆0(λ, L

1
r(Gc))

∣∣∣
λ=0
·

·
∞∏
n=0

µr0−1∏
k=0

λrnk − λ
λ01
rnk

∞∏
n=−∞

m∏
k=µr0

λrnk − λ
λ01
rnk

.

(11)
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Наряду с потенциалом σ рассмотрим потенциал σ̃ . В дальнейшем
будем считать, что если символ α обозначает объект, зависящий от σ ,
то тогда α̃ обозначает аналогичный объект, зависящий от σ̃ , и α̂ :=

α− α̃ .
В ρ -плоскости рассмотрим контур γ = γ(τ) := (−∞+ iτ,+∞+ iτ) ,

где τ > 0 такое, что inf{Λk ∪ Λ̃k} > −τ 2 . Пусть Γ будет контуром
в λ -плоскости, который есть образ γ при отображении λ = ρ2 . Пусть
CN := {|λ| = (N + 1/4)2} - контура с обходом по часовой стрелке.
Обозначим ΓN = Γ ∩ intCN . Введем в рассмотрение так называемую
вспомогательную обратную задачу:

Вспомогательная обратная задача IP (e,G) : по данным Me(λ) ,
построим потенциал q на e .

Эта вспомогательная задача рассматривается в параграфе 1.3. Ее ре-
шение может быть получено посредством следующего алгоритма.

Алгоритм 1.3.1. Дана функция Me(λ) .
1) Возьмем σ̃ = 0 и подсчитаем C̃e(xe, λ) , M̃e(λ) , а также

D̃k(xe, λ, µ) :=

〈
C̃e(xe, λ), C̃e(xe, µ)

〉
λ− µ

=

xe∫
0

C̃e(t, λ)C̃e(t, µ)dt,

r̃e(xe, ρ, θ) := D̃e(xe, λ, µ)θM̂e(µ);

2) Построим F̃k(x, ρ) используя формулу

F̃e(xe, ρ) :=
1

2πi
lim
N→∞

∫
ΓN

D̃e(xe, λ, µ)M̂e(µ)C̃e(xe, µ)dµ, λ = ρ2

3) Найдем Ψe(xe, ρ) , решив для каждого фиксированного xe ∈ [0, le]

основное уравнение вида

Ψe(xe, ρ) =
1

πi

∫
γ

r̃e(xe, ρ, θ)Ψe(xe, θ)dθ + F̃e(xe, ρ),
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4) Построим σe(x) , используя

σe(xe) = − 1

πi

∫
Γ

C̃e(xe, µ)Ĉe(xe, µ)M̂e(µ)dµ+

+
1

πi
l.i.m.N→∞

∫
γN

ρ cos 2ρxeM̂e(ρ
2)dρ

где Ĉe(xe, λ) = Ψe(xe, ρ) .
В параграфе 1.4 находим решение самой обратной задачи 1.1 посред-

ством следующего алгоритма.
Алгоритм 1.4.1 Даны Λ , Λr , r ∈ EB(Gc) .
1) Построим ∆(λ,Gc), ∆r(λ,Gc) , r ∈ EB(Gc) используя (11). Най-

дем Mr(λ) посредством

Mr(λ) = −∆(λ, L1
r(Gc))

∆(λ, L1(Gc))
.

Для ребер e ∈ EB(Gc) , найдем σe решая вспомогательную обратную
задачу по алгоритму 1.3.1. Будем считать, что G∗ - это граф-звезда,
образуемый из Gc удалением ребра e0 , а T - это граф, образуемый
циклом из ребра e0 . Посредством этого шага можно найти потенциал
на ребрах графа G∗ .

2) Найдем ∆(λ, `(e0)) и ∆(λ, L1(T )) решая систему

∆(λ, L1(Gc)) = ∆(λ, `(e0))∆(λ, L1(G∗)) + (∆(λ, L1(T )) + 1)

p∏
k=1

∆(λ, `k(ek))

∆j(λ, L
1(Gc)) = ∆(λ, `(e0))∆j(λ, L

1(G∗)) + (∆(λ, L1(T )) + 1)·

·
p∏

k=1,p\{j}

∆(λ, `k(ek)),

3) Найдем нули {zn}n≥1 функции ∆(λ, `(e0)) .
4) Будем считать, что D(λ) = ∆(λ, L(T )) + 2 . Подсчитаем

Q(zn) = ωn
√
D2(zn)− 4

5) Вычислим ∆(zn, `0(e0)) = 1
2(D(zn) +Q(zn)) .
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6) Найдем M0 по формуле

M0(λ) =
∞∑
n=0

Mn

λ− zn
, Mn = −∆(zn, `

1
0(e0))

∆̇(zn, `1(e0))
, (12)

7) Вычислим M0(λ) посредством (12) и найдем σ0 решая вспомога-
тельную обратную задачу на ребре e0 по алгоритму 1.3.1.

Во второй главе исследуется оператор Штурма - Лиувилля с син-
гулярным потенциалом (2), заданный на произвольном компактном гра-
фе Garb . Для определенности будем считать, что в графе Garb при-
сутствует больше одной граничной вершины, т.е |V B(Garb)| > 1 (слу-
чаями |V B(Garb)| = 0 и |V B(Garb)| = 1 можно пренебречь). Опре-
делим некоторую вершину v0 ∈ V B(Garb) как корень и I(v0, Garb) =

{r0} . В дальнейшем будем считать, что если e ∈ ES(Garb) , то начало
ребра будет ближе к корню, чем его конец. В отличие от первой гла-
вы, в качестве спектральных данных берутся функции Вейля Me(Garb) ,
e ∈ EB(Garb)\{r0} ∪ EC(Garb) . Рассмотрим краевую задачу L2

Ω(Garb) ,
Ω ⊂ EB(Garb) , для уравнения (3) с условиями склейки MC(Garb) и
граничным условиями

∂eye|µB(e,Garb) = 0, e ∈ EB(Garb)\Ω, yr|µB(r,Garb) = 0, r ∈ Ω. (13)

Также рассмотрим краевую задачу L2,v
r (Garb) , v = 0, 1 , r ∈ EC(Garb) ,

для уравнения (3) с условиями склейки MCr(Garb) и граничным усло-
виями

∂eye|µB(e,Garb) = 0, e ∈ EB(Garb), ∂vryr|r+ = 0.

Будем считать, что L2(Garb) := L2
∅(Garb) и L2

r(Garb) := L2
∅r(Garb) ,

r ∈ EC(Garb) . Рассмотрим краевую задачу LΩ(Q, v) для уравнения (3)
с условиями склейки MC(u,Q) , u ∈ V I(Q)\{v} и с граничными усло-
виями

∂eye|µB(e,Garb) = 0, e ∈ EB(Q)\{Ω}, yr|µB(r,Garb) = 0, r ∈ Ω,

∂kyk|v = 0, k ∈ I(v,Q).
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Мы определим L(Q, v) := L∅(Q, v) .В параграфе 2.1 вводится в рас-
смотрение следующая обратная задача.

Обратная Задача 2.1. Даны Me(λ,Garb) , e ∈ EB(Garb)\{r0} ∪
EC(Garb) , построить σ .

В параграфе 2.2 формулируются и доказываются некоторые вспомо-
гательные утверждения, а также находятся оценки для самих функций
ϕer(xe, λ) .

Лемма 2.2.3. Для каждого фиксированного xe ∈ [0, le] и для Imρ ≥
τ0 , τ0 - это некоторое фиксированное число, ρ → ∞ , справедливо
следующее представление

ϕer(xe, λ) = O
(1

ρ
e−xeImρ

)
, ϕ[1]

er (xe, λ) = O
(
e−xeImρ

)
,

ϕ̂er(xe, λ) =
1

ρ
eiρxeκ̂(ρ), κ(ρ), κ̃(ρ) ∈ K.

Этот результат позволяет вновь применить метод решения вспомога-
тельной обратной задачи по восстановлению потенциала q из функции
Вейля на некотором фиксированном ребре. В параграфе 2.3 формулиру-
ется так называемое псевдообрезание графа. Будем считать, что ES(Garb)

- это множество ребер, не принадлежащих ни одному циклу. Сведем все
циклы в точки, тогда получим некоторый граф G∗arb с множеством ребер
E(G∗arb) = ES(G) . Минимальное число ребер на G∗arb между корневой
вершиной и ребром e , включая e называется порядком ребра e . Обо-
значим множество E(ν), ν = 0, χ , множеством простых ребер порядка
ν .

Псевдообрезание графа. Зафиксируем ребро

r ∈ ES(Garb) ∩ EI(Garb) ∪ {r0}

и предположим, что r ∈ E(ν) . Обозначим v = r− . Вершина v делит
граф Garb на две части:

Garb = Q ∪ Ĝ, V (Q) ∩ V (Ĝ) = v, E(Ĝ) ∩ I(v,Garb) = r.
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r ∈ EB(Ĝ), r /∈ E(Q) ∩ I(v,Garb)

Более того, корневое ребро r0 ∈ E(Ĝ) . Мы будем считать σ на графе
Q известным. Фиксируем ребро e ∈ EB(Garb) ∩ E(Q). Будем считать
Me(λ,Garb) известным и некоторое k ∈ EB(Q) ∩ EB(Garb) .

1. Найдем функции Вейля Mr(λ, Ĝ) используя в случае, если v ∈
V B(Q) , e− = v , e ∈ E(Q) , формулу

Mr(λ, Ĝ) =
Mk(λ,Garb)∆(λ, L2

e(Q)) + ∆(λ, L2
ek(Q))

∆(λ, L2
k(Q)) + ∆(λ, L2(Q))Mk(λ,Garb)

.

и в ином случае, если v ∈ V I(Q) и s ∈ I(v) , s ∈ EI(Q) , используя
формулу

Mr(λ, Ĝ) =
∆(λ, L2

k(Q)) + ∆(λ, L2(Q))Mk(Garb)

∆(λ, L2(Q))Mk(Garb) + ∆(λ, L2
k(Q, v))

.

2. Решая вспомогательную обратную задачу по алгоритму 1.3.1, най-
дем σr на r .

Решение обратной задачи 2.1 можно получить, используя следующий
алгоритм

Алгоритм 2.1.1
1. Для каждого фиксированного ребра k ∈ EB(G) найдем σk на k ,

используя алгоритм 1.3.1.
2. Для каждого фиксированного ребра k ∈ EC(G) найдем σk на k ,

используя алгоритм 1.3.1.
3. Для каждого фиксированного ребра r ∈ E(ν) используя процедуру

псевдообрезания графа, найдем Mr(λ) . Используя алгоритм 1.3.1 най-
дем σr . Повторяя этот шаг для всех r ∈ E(ν) и для всех ν = χ−1, ..., 0 ,
найдем σ on Garb .

Таким образом, мы доказываем справедливость следующей теоремы:
Теорема 2.1.1. Если M(λ,Garb) = M̃(λ,Garb) , то σ = σ̃ . Таким

образом, задание вектора Вейля единственным образом определяет по-
тенциал на графе Garb .
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В третьей главе исследуется оператор Штурма - Лиувилля с замо-
роженным аргументом на интервале. Рассмотрим краевую задачу L3 =

L3(q(x), a, α, β) вида

`3y := −y′′(x) + q(x)y(a) = λy(x), 0 < x < π,

y(α)(0) = y(β)(π) = 0,

где λ - спектральный параметр, q(x) - комплекснозначная функция из
L2(0, π) и α, β ∈ {0, 1}. Пусть также k := π/a ∈ N. Будем называть вы-
рожденным случай, при котором выполняется одна из следующий групп
условий:

(i) α = β = 0;

(ii) α = 1, β = 0 и k нечетное;

(iii) α = β = 1 и k четное;


(14)

Также будем называть невырожденным случай, когда выполняется одна
из следующий групп условий:

(iv) α = 0, β = 1;

(v) α = 1, β = 0 и k четное;

(vi) α = β = 1 и k нечетное.


(15)

Введем в рассмотрение характеристическую функцию краевой задачи
L3

∆α,β(λ) =

∣∣∣∣∣C(α)(0, λ) S(α)(0, λ)

C(β)(π, λ) S(β)(π, λ)

∣∣∣∣∣ .
Собственные значения задачи L3 обозначим как {λn}n≥1 . В параграфе
3.1 в рассмотрение вводится следующая обратная задача.

Обратная задача 3.1. По данным {λn}n≥1, a, α и β найти q(x).

В параграфе 3.2 рассматриваются некоторые вспомогательные утвер-
ждения и находятся асимптотические представления спектра краевой
задачи L3 .
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Теорема 3.2.1. Краевая задача L3 имеет счетное множество соб-
ственных значений {λn}n≥1 вида

λn =
(
n− α + β

2
+
κn
n

)2

, {κn} ∈ l2. (16)

Более того, в вырожденном случае часть собственных значений вы-
рождается следующим образом:

(1) Для α = β = 0 :

λkn = (kn)2, n ∈ N; (17)

(2) Для α = 1, β = 0 и нечетных k :

λk(n−1/2)+1/2 = k2
(
n− 1

2

)2

, n ∈ N; (18)

(3) Для α = β = 1 и четных k :

λk(n−1/2)+1 = k2
(
n− 1

2

)2

, n ∈ N. (19)

Саму характеристическую функцию из спектра можно восстановить,
использую теорему Адамара:

∆α,β(λ) = πδα,β(λ1 − λ)αβ
∞∏

n=1+αβ

λn − λ(
n− α+β

2

)2 , (20)

В параграфе 3.3 доказывается теорема единственности, ставящая в
соответствие каждым спектральным данным единственный потенциал.

Теорема 3.3.1 В невырожденном случае: если {λn}n≥1 = {λ̃n}n≥1,

тогда q(x) = q̃(x) почти всюду на (0, π), т.е. задание спектра един-
ственным образом определяет потенциал.

В вырожденном случае: пусть k > 1 и существует оператор K :

L2(0, a)→ L2(0, a) , I +K - обратимый, такой что

q(a− t) = K(q(a+ t)), 0 < t < a, (21)

справедливо для q и q̃ . Тогда из того факта, что {λn}n≥1 = {λ̃n}n≥1

следует, что q(x) = q̃(x) почти всюду на (0, π).
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А также доказывается теорема, определяющая необходимые и доста-
точные условия разрешимости обратной задачи

Теорема 3.3.2. (I) Невырожденный случай. Тогда для произвольной
последовательности комплексных чисел {λn}n≥1 вида (16) существу-
ет функция q(x) ∈ L2(0, π) , такая что {λn}n≥1 является спектром
краевой задачи L3.

(II) Вырожденный случай. Тогда для произвольной последователь-
ности комплексных чисел {λn}n≥1 вида (16), удовлетворяющая усло-
виям вырождения (17) - (19) существует потенциал q(x) ∈ L2(0, π)

(не единственный), такой что {λn}n≥1 является спектром краевой
задачи L3.

Следующий алгоритм позволяет построить решение обратной задачи
в невырожденном случае.

Алгоритм 3.3.1. Пусть дан спектр {λn}n≥1 краевой задачи L3 в
невырожденном случае.

1. Построим ∆α,β(λ) по формуле (20).
2. Найдем Wα,β(t) обращая преобразование Фурье в одном из следу-

ющих представлений:

∆α,α(λ) = ρ2α
(sin ρπ

ρ
+

π∫
0

Wα,α(t)
cos ρt

ρ2
dt
)
, α = β (21)

∆α,β(λ) = (−1)α cos ρπ +

π∫
0

Wα,β(t)
sin ρt

ρ
dt, α 6= β. (21)

3. Строим потенциал q(x) , используя нижележащие алгоритмы: ал-
горитм 3.3.2 для невырожденного случая и алгоритм 3.3.3 для вырож-
денного.

Алгоритм 3.3.2. Пусть дана функция Wα,β(x) в невырожденном
случае

1. Подсчитаем q(x) на (0, a) по соответствующей формуле:
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Для α = 0 и β = 1 при нечетных k и x ∈ (0, a) :

q(x) = W0,1(x) +

(k−1)/2∑
j=1

(
W0,1(2ja+ x)−W0,1(2ja− x)

)
,

и при четных k и x ∈ (0, a) :

q(x) =

k/2∑
j=1

(
W0,1((2j − 1)a+ x)−W0,1((2j − 1)a− x)

)
;

Для α = 1, β = 0 и четных k при x ∈ (0, a) :

q(x) =

k/2∑
j=1

(−1)j
(
W1,0((k + 1− 2j)a− x) +W1,0((k + 1− 2j)a+ x)

)
;

Для α = β = 1 и нечетных k при x ∈ (0, a) :

q(x) = (−1)
k+1
2

(
W1,1(x) +

(k−1)/2∑
j=1

(−1)j
(
W1,1(2ja+ x) +W1,1(2ja− x)

))
.

2. Подсчитаем q(x) на (a, 2a) по формуле

q(x) = 2(−1)αWα,β(π + a− x)− q(2a− x), x ∈ (a, 2a).

3. Для j = 2, k − 1 повторим следующий шаг. Пусть функция q(x)

будет подсчитана на интервале (0, ja). Тогда найдем q(x) на (ja, (j +

1)a) по формуле

q(x) = (−1)α
(

2Wα,β(π + a− x) + q(x− 2a)
)
, x ∈ (ja, (j + 1)a).

Для определенности предположим, что k > 1 и потенциал q(x) удо-
влетворяет условию (21) с известным оператором K. Алгоритм для ре-
шения обратной задачи в вырожденном случае имеет следующий вид.

Алгоритм 3.3.3. Пусть дана функция Wα,β(x) в вырожденном слу-
чае
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1. Подсчитаем q(x) на интервале (a, 2a) по формуле

q(a+ x) = (I +K)−1(−2Wα,β(π − x)), x ∈ (0, a).

2. Подсчитаем q(x) на интервале (0, a) по формуле

q(a− x) = −2Wα,β(π − x)− q(a+ x), x ∈ (0, a).

3. Для j = 2, k − 1 повторим следующий шаг. Пусть функция q(x)

будет подсчитана на интервале (0, ja). Тогда найдем q(x) на (ja, (j +

1)a) по формуле

q(x) = −2Wα,β(π + a− x) + (−1)αq(x− 2a), x ∈ (ja, (j + 1)a).
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