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ВВЕДЕНИЕ

Актуальность темы. Метод Фурье является одним из важнейших мате-

матических методов. Академик В.А.Стеклов впервые дал строгое обоснование

метода Фурье, которое опирается на доказательство равномерной сходимости

ряда, представляющего формальное решение задачи, и рядов, получающихся

из него почленным дифференцированием нужное число раз.

Метод Фурье получил широкое распространение, было проведено боль-

шое количество исследований и достигнуты значительные успехи в это об-

ласти И.Г. Петровским, В.И. Смирновым, О.А. Ладыженской, В.А. Ильиным,

В.А. Чернятиным.

Недостатком такого подхода является то, что он требует завышения глад-

кости начальных данных. Выход из этого положения намечен А.Н.Крыловым.

Суть его приема состоит в том, что изучаемый вопрос о дифференцирова-

нии ряда решается путем разбиения его на два ряда, один из которых точно

суммируется и тем самым в этом случае не надо прибегать к почленному

дифференцированию, а второй ряд сходится настолько быстро, что его можно

почленно дифференцировать.

В.А. Чернятин, воспользовавшись приемом А.Н.Крылова с применением

асимптотик для собственных значений и собственных функций, успешно ис-

следовал ряд задач методом Фурье и значительно ослабил условия гладкости,

а в ряде случаев эти условия стали минимально возможными.

Переход от формального решения к новому виду, вытекающему из ис-

следований А.Н. Крылова, В.А. Чернятина, есть качественно новый шаг, позво-

ляющий с исчерпывающей полнотой исследовать смешанные задачи методом

Фурье и ставящий много новых важных вопросов и в теории функций.

В данной работе исследуется смешанная задача для волнового уравнения

с непрерывным комплексным потенциалом в случае нулевого начального по-

ложения и ненулевой начальной скорости и двух типов двухточечных гранич-

ных условий: когда концы закреплены и когда каждое из граничных условий

содержит производную по x.

Цель работы. Резольвентным подходом с использованием рекоменда-

ций А. Н. Крылова по ускорению сходимости рядов Фурье получить методом

Фурье классическое решение в случае ψ(x) ∈ W 1
2 [0, 1]. Также показать, что

в случае, когда ψ(x) ∈ L[0, 1], ряд формального решения для задачи с за-
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крепленными концами сходится равномерно в любой ограниченной области, а

для второй задачи он сходится лишь всюду, и для обеих задач является обоб-

щенным решением в равномерной метрике. Написать программный код для

вычисления резольвенты для двух задач с разными типами граничных условий

и в случае нулевого потенциала.

Структура работы. Данная работа состоит из введения, основной ча-

сти, заключения,списка использованных источников и приложений. Основная

часть включает в себя 5 разделов: Постановка задачи, Вспомогательные утвер-

ждения, Исследование задачи в случае граничных условий с закрепленными

концами, Исследование задачи в случае граничных условий, содержащих про-

изводную, практическая часть.

Научная новизна. В магистерской работе исследуется смешанная задача

для волнового уравнения с комплекснозначным потенциалом в случае нулевого

начального положения и ненулевой начальной скорости, а также для двух

типов двухточечных граничных условий. Приведены строгие математические

доказательства. Данные результаты имеют высокую научную значимость.

Положения выносимые на защиту. С использованием резольвентного

подхода в методе Фурье, получено классическое решение в случае ψ(x) ∈
W 1

2 [0, 1], а также исследована сходимость ряда формального решения в случае,

когда ψ(x) ∈ L[0, 1] и для обеих задач показано, что он является обобщенным

решением. Написан программный код для подсчета резольвенты.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

В первом разделе вводится в рассмотрение следующая смешанная задача

для волнового уравнения

∂2u(x, t)

∂t2
=
∂2u(x, t)

∂x2
− q(x)u(x, t), x ∈ [0, 1], t ∈ (−∞,∞) (1)

с начальными условиями

u(x, 0) = 0, u′t(x, 0) = ψ(x) (2)

и граничными условиями двух следующих видов:
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u(0, t) = u(1, t) = 0, (3)

u′x(0, t) + α1u(0, t)+β1u(1, t) = u′x(1, t) + α2u(0, t) + β2u(1, t) = 0. (4)

где q(x) ∈ C[0, 1] и комплекснозначна, αi, βi (i = 1, 2) - комплекснозначные

числа.

Во втором разделе приводятся вспомогательные утверждения, необхо-

димые для исследования поставленной задачи.

Резольвента.

Пусть A — линейный оператор. Его резольвентой называется функция

R(λ) = (A− λE)−1,

где E — тождественный оператор, а λ — комплексный параметр.

Асимптотика собственных значений.

Teopeма. Собственные значения дифференциального оператора n-го по-

рядка в интервале [0, 1], порожденного регулярными краевыми условиями, об-

разуют две бесконечные последовательности λ′k, λ
′′
k (k = N,N + 1, N + 2, . . .),

где N - некоторое целое число.

При нечетном n, n = 4q − 1,

λ′k = (−2kπi)n
[
1− n ln0 ξ

(1)

2kπi
+O

(
1

k2

)]
,

λ′′k = (2kπi)n
[
1 +

n ln0 ξ
(2)

2kπi
+O

(
1

k2

)]
,

a для нечетного n, n = 4q + 1,

λ′k = (2kπi)n
[
1 +

n ln0 ξ
(1)

2kπi
+O

(
1

k2

)]
,

λ′′k = (−2kπi)n
[
1− n ln0 ξ

(2)

2kπi
+O

(
1

k2

)]
;

где ξ(1) и ξ(2)− определенные корни уравнения θ1ξ + θ0 = 0 (θ0 и θ1 - опре-

деляются условиями регулярности) отвечающего области Sν (разбиения ком-

плексной плоскости) c ν, соответственно нечетным и четным.
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При четном n, n = 2µ, и θ20 − 4θ−1θ1 6= 0 (θ0, θ1 и θ−1 - определяются

условиями регулярности)

λ′k = (−1)µ(2kπ)n
[
1∓ µ ln0 ξ

′

kπi
+O

(
1

k2

)]
, (5)

λ′′k = (−1)µ(2kπ)n
[
1∓ µ ln0 ξ

′′

kπi
+O

(
1

k2

)]
, (6)

где ξ′ и ξ′′ - корни уравнения

θ1ξ
2 + θ0ξ + θ−1 = 0, (7)

отвечающего области S0, причем верхний знак в формулах (5)-(6) соответству-

ет четному, a нижний - нечетному µ.

Наконец, при четном n, n = 2µ, и θ20 − 4θ−1θ1 = 0

λ′k = (−1)µ(2kπ)n
[
1∓ µ ln0 ξ

kπi
+O

(
1

k3/2

)]
, (8)

λ′′k = (−1)µ(2kπ)n
[
1∓ µ ln0 ξ

kπi
+O

(
1

k3/2

)]
, (9)

где ξ - корень уравнения (7), отвечающего области S0, a выбор верхнего или

нижнего знака в формулах (8)-(9) следует производить также как в (5)-(6).

Также в этом разделе описаны задача Штурма - Лиувилля и метод Фурье,

прием Крылова по ускорению сходимости рядов Фурье и операторы преобра-

зования.

В третьем разделе исследуется задача (1)–(3).

Исследование задачи (1)–(3) для ψ(x) ∈ W 1
2 [0, 1]

Метод Фурье связан со спектральной задачей для оператора L:

Ly = −y′′ + q(x)y, y(0) = y(1) = 0.

Собственные значения оператора L, достаточно большие по модулю, простые,

с асимптотикой: λn = ρ2n (Re ρn > 0) , ρn = nπ + o(1).

Пусть γ̃n = {ρ| |ρ − nπ| = δ}, где δ > 0 и достаточно мало, а n > n0

и n0 таково, что при всех n > n0 внутрь γ̃n попадает лишь по одному ρn.

Пусть γn - образ γ̃n в λ-плоскости
(
λ = ρ2, Re ρ > 0

)
. Через Rλ = (L −
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λE)−1 обозначается резольвента оператора L (λ - спектральный параметр, E

— единичный оператор).

Формальное решение задачи (1)–(3) по методу Фурье можно представить

в виде

u(x, t) = − 1

2πi

(∫
|λ|=r

+
∑
n>n0

∫
γn

)
(Rλψ) (x)

sin ρt

ρ
dλ, (10)

где r > 0 фиксировано, на контуре |λ| = r нет собственных значений, все γn
при n > n0 находятся вне |λ| = r.

Через z1(x, ρ), z2(x, ρ) обозначается решение уравнения

y′′(x)− q(x)y(x) + ρ2y(x) = 0.

с начальными условиями z1(0, ρ) = z′2(0, ρ) = 1, z′1(0, ρ) = z2(0, ρ) = 0.

Теорема 1. Имеет место формула

Rλf = −z2(x, ρ) (f, z1) + v(x, ρ) (f, z2) + (Mρf) (x),

где v(x, ρ) = z2(x,ρ)z1(1,ρ)
z2(1,ρ)

, (f, g) =
∫ 1

0 f(x)g(x)dx, (Mρf) (x) =
∫ x
0 M(x, t, ρ)f(t)dt,

M(x, t, ρ) =

∣∣∣∣∣ z1(t, ρ) z2(t, ρ)

z1(x, ρ) z2(x, ρ)

∣∣∣∣∣.
Теорема 2. Для формального решения имеет место формула

u(x, t) = u0(x, t) + u1(x, t), (11)

где

u0(x, t) =
1

2πi

(∫
|λ|=r

+
∑
n>n0

∫
γn

)
v0(x, ρ) (ψ, z2)

sin ρt

ρ
dλ

u1(x, t) =
1

2πi

(∫
|λ|=r

+
∑
n>n0

∫
γn

)[
v(x, ρ)− v0(x, ρ)

]
(ψ, z2)

sin ρt

ρ
dλ

v0(x, ρ) = z02(x,ρ)z
0
1(1,ρ)

z02(1,ρ)
- то же, что и v(x, ρ), но взятое теперь для опера-

тора L0 : L0y = −y′′(x), y(0) = y(1) = 0. Таким образом, z01(x, ρ) = cos ρx,

z02(x, ρ) = sin ρx
ρ .
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Лемма 1. Имеет место формула

u0(x, t) = 2
∞∑
n=1

1

nπ
(ψ1(ξ), sinnπξ) sinnπx sinnπt.

где ψ1(ξ) = ψ(ξ) +
∫ 1

ξ K(τ, ξ)ψ(τ), K(τ, ξ) - ядро оператора преобразования.

Лемма 2. Ряд u0(x, t) сходится абсолютно и равномерно, и для его суммы

имеет место формула u0(x, t) = 1
2

∫ x+t
x−t ψ̃(τ)dτ, где ψ̃(x) = −ψ̃(−x), ψ̃(x+ 2) =

ψ̃(x), ψ̃(x) = ψ1(x) при x ∈ [0, 1]

Лемма 3. Производные ∂2u0(x,t)
∂t2 и ∂2u0(x,t)

∂x2 существуют почти всюду в

QT = [0, 1]× ×[−T, T ] при любом T > 0 и для таких x, t они совпадают.

Из лемм 2 и 3 получается

Теорема 3. Функция u0(x, t) есть классическое решение эталонной за-

дачи, т. е. u0(x, t) удовлетворяют условиям (1)–(3) с функцией ψ1(x) вместо

ψ(x), когда уравнение (1) с q(x) = 0 удовлетворяется почти всюду.

Лемма 4. Ряд u1(x, t) и ряды, получающиеся из него почленным диффе-

ренцированием до второго порядка по x и t, сходятся абсолютно и равномерно

в QT при любом T > 0.

Теорема 4. Если ψ(x) ∈ W 1
2 [0, 1], ψ(0) = ψ(1) = 0, то сумма ряда u(x, t)

формального решения задачи (1)–(3) является классическим решением этой

задачи, когда уравнение (1) выполняется почти всюду.

Исследование задачи (1)–(3) для ψ(x) ∈ L2[0, 1]

В этом случае сохраняется представление (11) формального решения.

Лемма 5. Ряд u1(x, t) и ряд, получающийся из него почленным диф-

ференцированием по t, сходятся абсолютно и равномерно в QT при любом

T > 0.

Далее исследуется ряд u0(x, t).

Лемма 6. Ряд u0(x, t) сходится абсолютно и равномерно и для его суммы

имеет место формула

u0(x, t) =
1

2
[Φ(x− t)− Φ(x+ t)], (12)

где Φ(x) = Φ(−x), Φ(x + 2) = Φ(x), Φ(x) =
∫ 1

x ψ1(τ)dτ на [0, 1]. Кроме

того, существует u′0t(x, 0) для почти всюду x ∈ [0, 1] и u′0t(x, 0) = ψ1(x).

Из леммы 6 следует
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Лемма 7. Функция u0(x, t) из (12) удовлетворяет условиям (3) и u0(x, 0) =

0; u0(x, t) абсолютно непрерывна по t, почти всюду на [0, 1] существует u′0t(x, 0)

и u′t(x, 0) = ψ1(x).

Лемма 8. Сумма ряда u(x, t) удовлетворяет условиям (3) и u(x, 0) = 0;

u(x, t) абсолютно непрерывна по t почти всюду на [0, 1], существует u′t(x, 0) и

u′t(x, 0) = ψ(x).

Обобщенное решение задачи (1)–(3)

Далее показывается, что сумма ряда u(x, t) формального решения задачи

(1)–(3) является обобщенным решением этой задачи для любой ψ(x) ∈ L2[0, 1].

Лемма 9. Для u(x, t) имеет место оценка maxQT
|u(x, t)| 6 CT‖ψ‖2, где

постоянная CT зависит только от T и ‖ · ‖2 — норма в L2[0, 1].

Пусть ψh(x) имеет тот же смысл, что и ψ(x) в теореме 4 и uh(x, t) —

решение задачи (1)–(3) для такой ψh(x). Тогда из леммы 9 следует

Теорема 5. Если ψ(x) ∈ L2[0, 1] и ‖ψh − ψ‖2 → 0 при h→ 0, то uh(x, t)

сходится к u(x, t) равномерно в QT при любом T > 0, т.е. u(x, t) есть обоб-

щенное решение задачи (1)–(3).

Пусть теперь ψ(x) ∈ L[0, 1]. Далее показывается, что формальное реше-

ние задачи (1)–(3), которое также берется в виде (11), и в этом случае является

обобщенным решением этой задачи.

Так же, как в лемме 9 получается

Лемма 10. Ряд u1(x, t) сходится абсолютно и равномерно в QT и спра-

ведлива оценка maxQT
|u1(x, t)| 6 CT‖ψ‖1, где постоянная CT зависит только

от T и ‖ · ‖1 — норма в L[0, 1].

Лемма 11. Ряд u0(x, t) сходится равномерно в QT и для его суммы спра-

ведлива формула (12).

Из леммы 11 следует

Лемма 12. Имеет место оценка maxQT
|u0(x, t)| 6 C‖ψ‖1.

Пусть ψh(x) и uh(x, t) - те же, что и в теореме 5, тогда из лемм 10–12

получается следующий результат.

Теорема 6. Если ψ(x) ∈ L[0, 1], то сумма ряда u(x, t) формального ре-

шения задачи (1)–(3) удовлетворяет условиям (3) и u(x, 0) = 0. Кроме того,

если ‖ψh − ψ‖1 → 0 при h→ 0, то uh(x, t) сходится к u(x, t) равномерно в QT

при любом T > 0, т.е. u(x, t) есть обобщенное решение задачи (1)–(3).

Таким образом, если ψ(x) ∈ L[0, 1], то сумма ряда u(x, t) формального
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решения задачи (1)–(3) обладает более слабыми, по сравнению со свойствами

обобщенного решения, когда ψ(x) ∈ L2[0, 1].

В четвертом разделе исследуется задача (1), (2), (4).

Исследование задачи (1), (2), (4) для ψ(x) ∈ W 1
2 [0, 1]

Пусть в задаче (1), (2), (4) ψ(x) ∈ W 1
2 [0, 1]. Теперь оператор L такой:

Ly = −y′′ + q(x)y,

u1(y) = y′(0) + α1y(0)+β1y(1) = 0, u2(y) = y′(1) + α2y(0) + β2y(1) = 0.

Собственные значения оператора L, достаточно большие по модулю,

простые и для них верна асимптотика из раздела 3. Контуры |λ| = r, γn, γ̃n -

те же, что и в разделе 3. Формальное решение (10) сохраняется, а оператор L0

тоже другой: L0y = −y′′, y′(0) = y′(1) = 0.

Представляя ψ(x) в виде ψ(x) = ψ1(x) + ψ2(x), где ψ1(x) ∈ W 1
2 [0, 1],

ψ1(0) = ψ1(1) = 0, ψ2(x) ∈ C2[0, 1], ψ2(x) ∈ DL (DL — область опре-

деления оператора L), формальное решение представляется в виде u(x, t) =

u0(x, t) + u1(x, t) + u2(x, t), где

u0(x, t) = − 1

2πi

(∫
|λ|=r

+
∑
n>n0

∫
γn

)(
R0
λψ1

) sin ρt

ρ
dλ, (13)

u1(x, t) = − 1

2πi

(∫
|λ|=r

+
∑
n>n0

∫
γn

)(
Rλψ1 −R0

λψ1

) sin ρt

ρ
dλ, (14)

u2(x, t) = − 1

2πi

(∫
|λ|=r

+
∑
n>n0

∫
γn

)
(Rλψ2)

sin ρt

ρ
dλ =

= − 1

2πi

(∫
|λ|=r

+
∑
n>n0

∫
γn

)
1

λ− µ0
(Rλg)

sin ρt

ρ
dλ,

R0
λ - резольвента оператора L0, g = (L− µ0E)ψ2, µ0 находится вне контуров

|λ| = r и γn при n > n0.

Теорема 7. Имеют место формулы

Rλf = v1(x, ρ) (f, z1) + v2(x, ρ) (f, z2)− (Mρf) (x),

R0
λf = v01(x, ρ)

(
f, z01

)
+ v02(x, ρ)

(
f, z02

)
−
(
M 0

ρf
)

(x),

9



гдеMρ - прежний оператор,M 0
ρ определяется через z0j (x, ρ) вместо zj(x, ρ) (j =

1, 2), v01(x, ρ) = −cos ρ cos ρx
ρ sin ρ , v02(x, ρ) = − cos ρx.

Так же, как и леммы 1, 2, получаются две следующие леммы.

Лемма 13. Имеет место формула

u0(x, t) = (ψ1, 1) t+ 2
∞∑
n=1

1

nπ
(ψ1(ξ), cosnπξ) cosnπx sinnπt.

Лемма 14. Ряд u0(x, t) сходится абсолютно и равномерно, и для его

суммы имеет место формула u0(x, t) = 1
2

∫ x+t
x−t ψ̃(τ)dτ, где ψ̃(−x) = ψ̃(x), ψ̃(x+

2) = ψ̃(x), ψ̃(x) = ψ1(x) при x ∈ [0, 1].

Лемма 3 и теорема 3 сохраняются, но теперь u0(x, t) есть решение (1),

(2) с функцией ψ1(x) из (13) вместо ψ(x) при q(x) = 0 с условиями u′0x(0, t) =

u′0x(1, t) = 0. Сохраняется также и лемма 4, которая верна также и для u2(x, t).

Теорема 8. Если ψ(x) ∈ W 1
2 [0, 1], то сумма ряда u(x, t) формального

решения задачи (1), (2), (4) есть классическое решение этой задачи, когда

уравнение (1) выполняется почти всюду.

Исследование задачи (1), (2), (4) для ψ(x) ∈ L2[0, 1]

Пусть в задаче (1), (2), (4) ψ(x) ∈ L2[0, 1]. В этом случае формальное

решение берется в виде

u(x, t) = u0(x, t) + u1(x, t), (15)

где u0(x, t) и u1(x, t) есть (13) и (14) с функцией ψ(x) вместо ψ1(x).

Лемма 15. Ряд u0(x, t) сходится абсолютно и равномерно, и для его

суммы имеет место формула u0(x, t) = (ψ, 1)t + 1
2 [Φ(x + t) − Φ(x − t)], где

Φ(x) = −Φ(−x),Φ(x+ 2) = Φ(x),Φ(x) =
∫ x
0 [ψ(τ)− (ψ, 1)]dτ при x ∈ [0, 1].

Лемма 16. Ряд u1(x, t) и ряды, получающиеся из него почленным диф-

ференцированием по x и t один раз, сходятся абсолютно и равномерно в QT

при любом T > 0.

Лемма 17. Если ψ(x) ∈ L2[0, 1], то сумма ряда u(x, t) абсолютно непре-

рывна по x, t и u(x, 0) = 0; почти всюду на [0, 1] существует u′t(x, 0) и почти

всюду на (−∞,∞) существуют u′x(0, t), u
′
x(1, t); почти всюду выполняются

u′t(x, 0) = ψ(x) и условия (4).

Обобщенное решение задачи (1), (2), (4)
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Пусть ψh(x) — та же, что и ψ(x) в разделе 6, и uh(x, t) — решение

задачи (1), (2), (4) с функцией ψh(x) вместо ψ(x), представленное в теореме 8.

Проводя рассуждения, аналогичные приведенным в доказательстве леммы 9,

получается следующий результат.

Теорема 9. Если ψ(x) ∈ L2[0, 1] и ‖ψh − ψ‖2 → 0 при h→ 0, то uh(x, t)

сходится к u(x, t) равномерно в QT при любом T > 0, т.е. u(x, t) есть обоб-

щенное решение задачи (1), (2), (4).

Далее рассматривается случай, когда в задаче (1), (2), (4) ψ(x) ∈ L[0, 1].

Формальное решение имеет вид (15). В этом случае лемма 10 сохраняется.

Лемма 18. Ряд u0(x, t) сходится всюду при x ∈ [0, 1] и t ∈ (−∞,∞),

причем maxQT
|u0(x, t)| 6 cT‖ψ‖1, где постоянная cT зависит только от T .

Если ψh(x) и uh(x, t) — те же, что и в теореме 9, то следует

Теорема 10. Если ψ(x) ∈ L[0, 1], то ряд u(x, t) формального решения

задачи (1), (2), (4) сходится всюду при x ∈ [0, 1], t ∈ (−∞,∞) и u(x, 0) = 0.

Более того, если ‖ψh − ψ‖1 → 0 при h → 0, то решение uh(x, t) задачи (1),

(2), (4) сходится к u(x, t) равномерно в QT при любом T > 0. Таким образом,

u(x, t) является обобщенным решением задачи (1), (2), (4) для ψ(x) ∈ L[0, 1].

В девятом разделе описана практическая часть. В качестве самосто-

ятельной работы был написан программный код, для подсчета резольвенты

оператора в случае двух типов граничных условий: когда концы закреплены и

когда каждое из граничных условий содержит производную по x. В качестве

инструмента разработки был использован пакет прикладных программ Matlab.

Алгоритм работы программы, код и результаты приведены в магистерской ра-

боте.

ЗАКЛЮЧЕНИЕ

В магистерской работе была исследована смешанная задача для волно-

вого уравнения с непрерывным комплексным потенциалом в случае нулевого

начального положения и ненулевой начальной скорости, а также двух типов

двухточечных граничных условий: когда концы закреплены и когда каждое из

граничных условий содержит производную по x. С использованием резоль-

вентного подхода в методе Фурье, было получено классическое решение в

случае ψ(x) ∈ W 1
2 [0, 1] (уравнение удовлетворяется почти всюду). Было также

показано, что в случае, когда ψ(x) ∈ L[0, 1], ряд формального решения для
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задачи с закрепленными концами сходится равномерно в любой ограничен-

ной области, а для второй задачи он сходится лишь всюду, и для обеих задач

является обобщенным решением в равномерной метрике. Также, с помощью

пакета прикладных программ Matlab был написан программный код, с помо-

щью которого рассчитывается резольвента оператора для наперед заданной

функции в случае двух типов граничных условий.
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