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ВВЕДЕНИЕ

Актуальность темы. Метод Фурье - один из важнейших математиче-

ских методов. Впервые строгое обоснование метода Фурье смог дать академик

В. А. Стеклов. Метод Фурье получил широкое распространение, в этой обла-

сти были достигнуты значительные успехи И.Г.Петровским, В.И.Смирновым,

О. А. Ладыженской, В.А.Ильиным. Но у данного подхода есть существенный

недостаток: требуется завышение гладкости начальных данных.

В ходе исследований по ускорению сходимости рядов Фурье А. Н. Кры-

лов разработал прием, который сводит вопрос о дифференцировании ряда к

изучению двух других рядов, которые получаются путем разбиения перво-

го. Один из этих рядов точно суммируется, а второй ряд сходится настолько

быстро, что его можно дифференцировать почленно. А. Н. Крылов успешно

преодолел трудности, связанные с невозможностью почленного дифференци-

рования на ряде конкретных прикладных задач.

В. А. Чернятин, воспользовавшись приемом А. Н. Крылова и асимптоти-

кой для собственных значений и собственных функций, успешно исследовал

ряд задач методом Фурье и значительно ослабил условия гладкости условия

гладкости, более того, в ряде случаев эти условия стали минимально возмож-

ными.

Переход от формального решения к новому виду, вытекающему из ис-

следований А. Н. Крылова, В. А. Чернятина, есть качественно новый шаг,

позволяющий исследовать смешанные задачи методом Фурье с исчерпываю-

щей полнотой. Кроме того ставится много новых важных вопросов в теории

функций.

Резольвентный подход к методу Фурье, который излагается в работах

А.П. Хромова, В. В. Корнева, М. Ш. Бурлуцкой позволяет найти решение сме-

шанной задачи для однородного волнового уравнения с ослабленными усло-

виями гладкости без использования информации о собственных и присоеди-

ненных функциях соответствующей спектральной задачи.

В данной работе исследуется резольвентный подход к методу Фурье в

смешанной задаче для неоднородного волнового уравнения с комплексным

потенциалом и закрепленными краевыми условиями при минимальных требо-

ваниях на исходные данные.

Цель работы. Необходимо дать обоснование метода Фурье при получе-
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нии классического решения в смешанной задаче для неоднородного волнового

уравнения с комплексным потенциалом и закрепленными краевыми условиями

при минимальных требованиях на начальные данные. Написать программный

код для вычисления резольвенты функции в случае нулевого потенциала.

Структура работы. Данная работа состоит из введения, основной ча-

сти, заключения,списка использованных источников и приложений. Основная

часть включает в себя 5 глав: Постановка задачи, Частные случаи, Вспомога-

тельные утверждения, Основная теорема, Практическая часть.

Научная новизна. В магистерской работе излагается резольвентный

подход к методу Фурье в смешанной задаче, в случае, когда волновое урав-

нение неоднородное и его потенциал комплекснозначный. Приведены строгие

математические доказательства. Данные результаты имеют высокую научную

значимость.

Положения выносимые на защиту. Подробно изложен резольвентный

подход к методу Фурье, получено классическое решение для поставленной

задачи, написан программный код для подсчета резольвенты.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

В первом разделе рассматривается смешанная задача следующего вида:

∂2u(x, t)

∂t2
=
∂2u(x, t)

∂x2
− q(x)u(x, t) + f(x, t), (x, t) ∈ Q = [0, 1]× (−∞,∞),

(1)

u(0, t) = u(1, t) = 0, (2)

u(x, 0) = ϕ(x), u′t(x, 0) = ψ(x), (3)

где все функции предполагаются комплекснозначными, причем

q(x) ∈ C[0, 1], ϕ(x) ∈ C2[0, 1], ψ(x) ∈ C1[0, 1], f(x, t) непрерывна в Q. (4)

Определение 1. Классическим решением данной задачи будет называть-

ся функция u(x, t), для которой выполняются два условия:

1) u(x, t) ∈ C2(Q),

2) u(x, t) удовлетворяет данной задаче.

Накладываются необходимые условия для существования классического
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решения:

ϕ(0) = ϕ(1) = ψ(0) = ψ(1) = 0, (5)

ϕ′′(0) + f(0, 0) = ϕ′′(1) + f(1, 0) = 0. (6)

Дополнительно необходимо потребовать, чтобы

f ′t(x, t) ∈ C(Q). (7)

Основной задачей ВКР является доказательство того факта, что при сде-

ланных предположениях формальный ряд, построенный по методу Фурье, схо-

дится и его сумма является классическим решением поставленной задачей.

Далее в работе приводится ряд теорем, близких к результатам основной

теоремы данной ВКР.

Во втором разделе исследовалась вспомогательная спектральная задача

с вещественнозначным потенциалом, для которой была получена асимптотика

собственных значений. Эта асимптотика была распространена на случай ком-

плексного потенциала. Были доказаны теорема 2 и 3 – частные случаи задачи

(1)-(3).

Для собственных значений λn = ρ2n оператора L, который задается со-

отношениями: Ly = −y′′(x) + q(x)y(x), y(0) = y(1) = 0, при достаточно

больших n справедлива асимптотика:

ρn = nπ + εn, n = n0, n0 + 1, . . . , εn = O

(
1

n

)
.

Далее вводится вспомогательная задача и доказывается лемма о явной

формуле резольвенты.

Пусть z1(x, ρ) и z2(x, ρ) решения уравнения y′′ − q(x) + ρ2y = 0 с на-

чальными условиями z1(0, ρ) = z′2(0, ρ) = 1 и z′1(0, ρ) = z2(0, ρ) = 0. Функции

zj(x, ρ) целые по ρ и λ, j = 1, 2.

Лемма 1. Для Rλ имеет место формула

Rλg = −z2(x, ρ) (g, z1) + v(x, ρ) (g, z2) +Mρg,
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где (g, z) =
∫ 1

0 g(x)z(x)dx, v(x, ρ) = z2(x, ρ)z1(1, ρ)z
−1
2 (1, ρ),

Mρg =

∫ x

0

M(x, ξ, ρ)g(ξ)dξ, M(x, ξ, ρ) =

∣∣∣∣∣ z1(x, ρ) z2(x, ρ)

z1(ξ, ρ) z2(ξ, ρ)

∣∣∣∣∣ .
Так же устанавливается связь метода Фурье со спектральной задачей для

оператора второго порядка.

Вводятся окружности γ̃n = {ρ| |ρ−nπ| = δ}, где δ > 0 и достаточно мало,

n > n0, а n0 таково, что внутри γ̃n находится только одно ρn. Пусть γn — образ

γ̃n в λ-плоскости
(
λ = ρ2, Re ρ > 0

)
. Формальное решение поставленной

задачи по методу Фурье задачи берется в виде

u(x, t) = − 1

2πi

(∫
|λ|=r

+
∑
n>n0

∫
γn

)[
(Rλϕ) (x) cos ρt+

1

ρ
(Rλψ) (x) sin ρt+

+

∫ t

0

(Rλf) (x, τ)
sin ρ(t− τ)

ρ
dτ

]
dλ, (8)

где Rλf – значение Rλ на функции f(x, τ) как функции x, r > 0 фиксировано,

и контур |λ| = r содержит внутри только те λn, номера которых меньше n0,

причем на самом контуре собственных значений нет.

Правая часть формулы представляет собой формальный ряд, построен-

ный по методу Фурье.

Теорема 1. Если u(x, t) — классическое решение задачи (1)-(3), то для

него справедлива формула (8), причем ряд сходится равномерно по x ∈ [0, 1]

при каждом фиксированном t.

Следующие две теоремы – частные случаи задачи (1)-(3).

Вначале – для однородного уравнения (1) справедлива теорема:

Теорема 2. Пусть в задаче (1)-(3) f(x, t) = 0. Тогда ряд в (8) сходится

абсолютно и равномерно в QT = [0, 1] × [−T, T ], где T > 0 — произвольное

фиксированное число, и формальное решение (8) есть классическое решение

этой задачи.

Следующий частный случай задачи (1)-(3), когда q(x) = ϕ(x) = ψ(x) =

0. Через R0
λ обозначается резольвента оператора L0, который есть оператор L
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при q(x) = 0 с собственными значениями λ0n = n2π2, n = 1, 2, . . . . По лемме 1

R0
λg = −z02(x, ρ)

(
g, z01

)
+ v0(x, ρ)

(
g, z02

)
+M 0

ρg (9)

где z01, z
0
2, v

0,M0
ρ− те же, что и z1, z2, v,Mρ, но взятые для оператора L0. В этом

случае

z01(x, ρ) = cos ρx, z02(x, ρ) =
1

ρ
sin ρx, v0(x, ρ) = sin ρx ctg ρ.

Далее доказывается теорема, справедливая для случая нулевых началь-

ных данных.

Теорема 3. При выполнении условия f(0, 0) = f(1, 0) = 0 классическое

решение задачи (1)-(3) в случае q(x) = ϕ(x) = ψ(x) = 0 существует и дается

формулой

u(x, t) = − 1

2πi

(∫
|λ|=r

+
∑
n>n0

∫
γn

)(∫ t

0

(
R0
λf
)
(x, τ)

sin ρ(t− τ)
ρ

dτ

)
dλ

где R0
λf− значение R0

λ на функции f(x, τ) как функции x, причем ряд сходится

равномерно по x ∈ [0, 1] при любом фиксированном t.

В третьем разделе приведены некоторые вспомогательные данные, необ-

ходимые для понимания и исследования основной теоремы данной работы.

Вначале рассматривается метод Фурье и задача Штурма – Лиувилля,

которая состоит в отыскании нетривиальных решений на промежутке (a, b)

уравнения Штурма — Лиувилля

L[y] = λρ(x)y(x),

удовлетворяющих однородным краевым (граничным) условиям
α1y

′(a) + β1y(a) = 0, α2
1 + β2

1 6= 0;

α2y
′(b) + β2y(b) = 0, α2

2 + β2
2 6= 0;

и значений параметра λ, при которых такие решения существуют.

Оператор L[y] здесь — это действующий на функцию y(x) линейный

дифференциальный оператор второго порядка вида

L[y] ≡ d

dx

[
−p(x)dy

dx

]
+ q(x)y(x),
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(оператор Штурма — Лиувилля или оператор Шрёдингера), x — веще-

ственный аргумент.

Функции p(x), p′(x), q(x), ρ(x) предполагаются непрерывными на (a, b),

кроме того функции p(x), ρ(x) положительны на (a, b).

Искомые нетривиальные решения называются собственными функция-

ми этой задачи, а значения λ, при которых такое решение существует — её

собственными значениями (каждому собственному значению соответствует

собственная функция).

Задачи Штурма — Лиувилля возникают при решении уравнений в част-

ных производных методом разделения переменных (или методом Фурье) – ме-

тод решения дифференциальных уравнений, основанный на алгебраическом

преобразовании исходного уравнения к равенству двух выражений, зависящих

от разных независимых переменных.

Асимптотика собственных значений.

Суть данного пункта описывается теоремой:

Teopeма. Собственные значения дифференциального оператора n-го по-

рядка в интервале [0, 1], порожденного регулярными краевыми условиями, об-

разуют две бесконечные последовательности λ′k, λ
′′
k (k = N,N + 1, N + 2, . . .),

где N - некоторое целое число.

При нечетном n, n = 4q − 1,

λ′k = (−2kπi)n
[
1− n ln0 ξ

(1)

2kπi
+O

(
1

k2

)]
,

λ′′k = (2kπi)n
[
1 +

n ln0 ξ
(2)

2kπi
+O

(
1

k2

)]
,

a для нечетного n, n = 4q + 1,

λ′k = (2kπi)n
[
1 +

n ln0 ξ
(1)

2kπi
+O

(
1

k2

)]
,

λ′′k = (−2kπi)n
[
1− n ln0 ξ

(2)

2kπi
+O

(
1

k2

)]
;

где ξ(1) и ξ(2)− определенные корни уравнения θ1ξ + θ0 = 0 отвечающего

области Sν c ν, соответственно нечетным и четным.
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При четном n, n = 2µ, и θ20 − 4θ−1θ1 6= 0

λ′k = (−1)µ(2kπ)n
[
1∓ µ ln0 ξ

′

kπi
+O

(
1

k2

)]
, (10)

λ′′k = (−1)µ(2kπ)n
[
1∓ µ ln0 ξ

′′

kπi
+O

(
1

k2

)]
, (11)

где ξ′ и ξ′′ - корни уравнения

θ1ξ
2 + θ0ξ + θ−1 = 0, (12)

отвечающего области S0, причем верхний знак в формулах (10)-(11) соответ-

ствует четному, a нижний - нечетному µ.

Наконец, при четном n, n = 2µ, и θ20 − 4θ−1θ1 = 0

λ′k = (−1)µ(2kπ)n
[
1∓ µ ln0 ξ

kπi
+O

(
1

k3/2

)]
, (13)

λ′′k = (−1)µ(2kπ)n
[
1∓ µ ln0 ξ

kπi
+O

(
1

k3/2

)]
, (14)

где ξ - (двойной) корень уравнения (12), отвечающего области S0, a выбор

верхнего или нижнего знака в формулах (13)-(14) следует производить по

такому же правилу, как в (10)-(11).

B первых трех случаях все собственные значения, начиная с некоторого,

простые, а в четвертом - начиная с некоторого, простые, или двукратные.

Резольвента и ее свойства.

Определение 2.

Пусть A — линейный оператор. Его резольвентой называется функция

R(λ) = (A− λE)−1,

где E — тождественный оператор, а λ — комплексное число, из резольвентного

множества, то есть такого множества, что R(λ) есть ограниченный оператор.

Операторы преобразования.

На интервале (−a, a) (a 6 ∞) рассматривается дифференциальное
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уравнение Штурма - Лиувилля

y′′ − q(x)y + λ2y = 0, (15)

где q(x) – непрерывная на этом интервале комплекснозначная функция (по-

тенциал), а λ – комплексный параметр. В дальнейшем q(x) будет потенци-

алом этого уравнения или соответствующего оператора Штурма - Лиувилля

L = − d2

dx2 + q(x). Через e0(λ, x) обозначаются решения уравнения (15) при

начальных данных

e0(λ, 0) = 1, e′0(λ, 0) = iλ (16)

(здесь индекс "0" означает, что начальные данные задаются в точке 0, а буква e

напоминает, что они такие же, как у функции eiλx, с которой совпадает e0(λ, x),

если q(x) ≡ 0).

Интегральный оператор I +K, определенный формулой

(I +K)f = f(x) +

∫ x

−x
K(x, t)f(t)dt,

называется оператором преобразования, сохраняющим начальные условия в

точке x = 0. Он переводит функции e−iλx (решение простейшего уравнения

(15) при начальных данных (16)) в решениях уравнения (15) при тех же на-

чальных данных. Поскольку функции eiλx и e−iλx образуют фундаментальную

систему решений уравнения y′′ + λ2y = 0, оператор I +K преобразует любое

решение этого уравнения в решении уравнения (15) при тех же начальных

данных в точке 0.

Прием Крылова по ускорению сходимости рядов Фурье.

Смысл этого приема заключается в следующем. Пусть имеется сходя-

щийся тригонометрический ряд

f(x) =
1

2
a0 +

∞∑
n=1

(an cos
πnx

l
+ bn sin

πnx

l
), (17)

с коэффициентами an, bn первого порядка малости относительно 1/n. Они

представляются в виде

an =
An

n
+ αn, bn =

Bn

n
+ βn,
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где αn, βn имеют порядок малости относительно 1/n выше первого. Тогда ряд

(17) можно записать как

f(x) =
1

2
a0 +

∞∑
n=1

(αn cos
πnx

l
+ βn sin

πnx

l
) +

∞∑
n=1

(
An

n
cos

πnx

l
+
Bn

n
sin

πnx

l
).

Здесь первый ряд будет иметь порядок малости выше первого, что и

требовалось. А второй ряд можно просуммировать с помощью известных раз-

ложений.

Если требуется более высокий порядок малости коэффициентов (т.е. бо-

лее быстрая сходимость), то следует продолжить операцию улучшения сходи-

мости. Для этого улучшенный ряд дифференцируется, затем снова выделяется

главная часть вида 1/n, и процедура улучшения сходимости повторяется.

Таким образом, последовательное выделение особенностей позволяет

достичь необходимой скорости сходимости ряда Фурье. Такова общая схема

метода.

Вспомогательные леммы необходимы для доказательства основной тео-

ремы.

Лемма 2. При ρ ∈ γ̃n имеют место асимптотические формулы

v(j)(x, ρ) = v0(j)(x, ρ) +O
(
ρj−1

)
, j = 0, 1, 2,

где оценки O(. . .) равномерны по x ∈ [0, 1].

Лемма 3. При ρ ∈ γ̃n имеют место формулы

(g, z2) = (nπ + µ)−1 [(g1(ξ) cosµξ, sinnπξ) + (g1(ξ) sinµξ, cosnπξ)] ,(
g, z2 − z02

)
= (nπ + µ)−2 [(g2(ξ) cosµξ, cosnπξ)− (g2(ξ) sinµξ, sinnπξ)] ,

где ρ = nπ + µ, µ ∈ γ̃0, g1(ξ) = g(ξ) +
∫ 1

ξ K(s, ξ)g(s)ds, g2(ξ) = −g(ξ)K(ξ, ξ) +∫ 1

ξ K
′
ξ(s, ξ)g(s)ds,K(s, ξ) непрерывно дифференцируема по s, ξ ∈ [0, 1].

Лемма 4. Через γ(x) обозначаются функции cosx или sinx.Пусть f(x, t) ∈
C (QT ), f(x, t, µ) = f(x, t)γ(µx), µ ∈ γ̃0 и βn(t, µ) = (f(x, t, µ), γ(nπx)). Тогда
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справедлива оценка

n2∑
n=n1

1

n
|βn(t, µ)| 6 c

(
n2∑

n=n1

1

n2

)1/2

,

где постоянная c не зависит от t, µ, c1 и c2.

Вводится новое обозначение an(x, t) и доказывается лемма о возможно-

сти почленного дифференцирования an(x, t) по x и t:

an(x, t) =

∫
γn

(∫ t

0

(
Rλf −R0

λf
)
(x, τ)

sin ρ(t− τ)
ρ

dτ

)
dλ.

Лемма 5. Ряды
∑

n>n0
a
(j)
n,xj(x, t) и

∑
n>n0

a
(j)
n,tj(x, t) (j = 0, 1, 2) сходятся

абсолютно и равномерно по (x, t) ∈ QT .

В четвертом разделе изложена основная идея данной работы. Формаль-

ное решение (8) представляется в виде суммы

u(x, t) = u1(x, t) + u2(x, t) + u3(x, t) + u4(x, t), где

u1(x, t) = −
1

2πi

(∫
|λ|=r

+
∑
n>n0

∫
γn

)(∫ t

0

(
R0
λf1
) sin ρ(t− τ)

ρ
dτ

)
dλ, (18)

u2(x, t) = −
1

2πi

(∫
|λ|=r

+
∑
n>n0

∫
γn

)
(Rλψ)

sin ρt

ρ
dλ, (19)

u3(x, t) = −
1

2πi

(∫
|λ|=r

+
∑
n>n0

∫
γn

)(∫ t

0

(
Rλf1 −R0

λf1
) sin ρ(t− τ)

ρ
dτ

)
dλ,

(20)

u4(x, t) = −
1

2πi

(∫
|λ|=r

+
∑
n>n0

∫
γn

)(
(Rλϕ) cos ρt+

∫ t

0

(Rλf2)
sin ρ(t− τ)

ρ
dτ

)
dλ,

(21)

f1(x, τ) = f(x, τ)− f2(x), f2(x) = −ϕ′′(x) + q(x)ϕ(x).

Лемма 6. Ряд (18) сходится и функция u1(x, t) является классическим

решением задачи (1)-(3) при q(x) = ϕ(x) = ψ(x) = 0 с неоднородностью

f1(x, t).

Лемма 7. Ряд (19) сходится и функция u2(x, t) является классическим

11



решением задачи (1)-(3) при ϕ(x) = 0 и f(x, t) = 0.

Лемма 8. Ряд (21) сходится к функции ϕ(x).

Лемма 9. Ряд (20) сходится, и функция u3(x, t) непрерывна вместе с

частными производными u′′3,xx(x, t) и u′′3,tt(x, t), причем

u3(0, t) = u3(1, t) = u3(x, 0) = u′3,t(x, 0) = 0, x ∈ [0, 1], t ∈ R,

u′′3,tt(x, t)−u′′3,xx(x, t) =
1

2πi
q(x)

(∫
|λ|=r

+
∑
n>n0

∫
γn

)(∫ t

0

(Rλf1)
sin ρ(t− τ)

ρ
dτ

)
dλ.

Основным результатом данного раздела и всей работы в целом является

теорема 4.

Теорема 4. Если выполняются условия (4)-(7), то при любых x ∈ [0, 1] и

t ∈ R формальный ряд (8) сходится, и его сумма u(x, t) является классическим

решением задачи (1)-(3).

В пятом разделе описана практическая часть. В качестве самостоятель-

ной работы был написан программный код, для подсчета резольвенты опе-

ратора по формуле (9). В качестве инструмента разработки был использован

Matlab – пакет прикладных программ для решения задач технических вычисле-

ний. Алгоритм работы программы, код и результаты приведены в магистерской

работе.

ЗАКЛЮЧЕНИЕ

В магистерской работе дается обоснование метода Фурье при получении клас-

сического решения в смешанной задаче для неоднородного волнового уравне-

ния с комплексным потенциалом и закрепленными краевыми условиями при

минимальных требованиях на начальные данные. Используемый резольвент-

ный подход не требует никакой информации о собственных и присоединенных

функциях соответствующей спектральной задачи. Также, был разработан про-

граммный код, с помощью которого возможно посчитать резольвенту опера-

тора для наперед заданной функции с помощью пакета прикладных программ

для решения задач технических вычислений Matlab.
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