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ВВЕДЕНИЕ

Распределенные динамические системы встречаются во многих областях

науки и техники, включая физику, биологию, химию, математику, лингвистику,

экологию и т. д [1–4].

По своей структуре распределенные системы делятся на дискретные и

непрерывные. Большой интерес представляют системы с глобальной связью,

где каждый элемент связан с каждым.

Дискретные системы с глобальной связью реализованы таким обра-

зом, что каждый индивидуальный элемент демонстрирует сложную динамику,

включая переход к хаосу, а связь выбрана простой [5–9]. Слагаемые, отвечаю-

щие за глобальную связь, одинаковы для всех элементов и представляют собой

среднее поле.

Такие системы демонстрируют поведение, называемое кластеризацией,

когда внутри кластера состояния индивидуальных элементов полностью сов-

падают.

Непрерывные системы с глобальной связью продуцируют общее сред-

нее поле. В качестве индивидуального элемента выбираются системы, заве-

домо демонстрирующие сложную нелинейную динамику [8,10–13]. В данной

системе наблюдаются синфазный и несинфазный режимы.

Целью данной работы является параметрический анализ дискретных и

непрерывных систем с глобальной связью, каждый индивидуальный элемент

которых демонстрирует сложную динамику.

Цель включает в себя следующие задачи:

— Исследовать систему глобально связанных логистических отображений,

провести многопараметрический анализ.

— Исследовать систему глобально связанных логистических отображений

под действием идентичного и неидентичного шума.

— Рассмотреть динамику системы глобально связанных осцилляторов Ландау-

Стюарта, провести многопараметрический анализ.
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1 Параметрический анализ системы глобально связанных

отображений

Наиболее общий случай — это системы с глобальной связью, то есть,

каждый элемент связан с каждым.

Одним из важных свойств систем с глобальной связью является свой-

ство кластеризации, то есть, мгновенные состояния индивидуальных элемен-

тов совпадают в любой момент времени (после n итераций). Таким образом,

наличие глобальной связи стремится синхронизовать динамику отдельных эле-

ментов (состояния, демонстрирующие в начале процесса различную динамику,

спустя некоторое время распределяются по кластерам, поведение элементов

внутри которых полностью совпадает).

В данной работе основное внимание уделено параметрическому анализу

системы глобально связанных отображений. Также рассматривается влияние

шума на динамику такой системы.

1.1 Системы глобально связанных отображений

В качестве отображения, которое будет исследоваться в данной работе,

выбрано логистическое отображение [14] вида

xn+1 = 1− λx2n (1)

В 1990 году Канеко [15] вводит в рассмотрение систему отображений с

глобальной связью вида:

xn(i) = (1− ε)f(xn−1(i)) +
ε

N

N∑
j=1

f(xn(j)). (2)

где xn(i)— динамическая переменная, соответствующая i-тому отображению

в n-ый момент времени, ε— параметр глобальной связи. В качестве fn−1(i)

выбрано логистическое отображение (1), где λ— параметр нелинейности.

В работах [16,17] показано, что для полного описания динамики систем

отображений с глобальной связью необходимо использовать два типа связи:

диссипативную и инерционную.

Два типа связи можно объяснить на качественном уровне следующим об-

разом. Пусть есть две популяции, каждая из которых развивается по похожим

законам (рисунок 1a).
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Предположим, что члены популяции размножаются (гибнут) в пределах

своей популяции, а потом на короткое время получают возможность «мигри-

ровать» между популяциями (рисунок 1b). Такая связь стремится выровнять

мгновенные состояния подсистем. Ее принято называть диссипативной.

Другой способ состоит в том, что организмы получают возможность ми-

грации, минуя цикл размножения и гибели в «своей» популяции (рисунок 1c).

Такая связь способствует сохранению памяти о состоянии на предыдущем

шаге, и ее естественно именовать инерционной связью.

Наконец, могут присутствовать оба типа связи (рисунок 1d). Такая связь

называется комбинированной.
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Рисунок 1 – Схематическое представление связи между популяциями. a — популяции,
развивающиеся изолированно; b — диссипативная связь между популяциями; с —

инерционная связь между популяциями; d — комбинированная связь.

В работе [16] введена система глобально связанных логистических отоб-

ражений с двумя типами связи вида:

xn+1(i) = (1− ε1)f(xn(i))− ε2xn(i) +
ε1
N

N∑
j=1

f(xn(j)) +
ε2
N

N∑
j=1

xn(j), (3)

где f(x) = 1 − λx2 — нелинейная функция, соответствующая логистическому

отображению, i перечисляет элементы сети, n обозначает дискретное время,

N — общее количество элементов в системе, ε1 и ε2 — параметры диссипа-

тивной и инерционной связи соответственно, λ— параметр, отвечающий за

нелинейность. Два последних члена в виде сумм не зависят от индекса j, дру-

гими словами, они одинаковы для всех элементов. Следовательно, их можно
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интерпретировать как два средних поля, отвечающих двум типам глобальной

связи.

Канеко [15] выделяет четыре типа аттракторов или режимов динамики

системы в зависимости от количества и размера кластеров (относительных чи-

сел заполнения pi = Ni
N ), причем эта классификация с очевидностью остается

в силе для обобщенной модели.

1. Когерентный аттрактор: мгновенные состояния всех элементов совпа-

дают в любой момент времени. Динамика системы во времени в этом

случае не отличается от динамики одномерного логистического отобра-

жения.

2. Аттрактор с малым числом кластеров, каждый из которых содержит мно-

го элементов.

3. Режим с большим числом кластеров, небольшая часть которых содержит

много элементов, а остальные — мало.

4. Режим, когда в системе имеется большое число кластеров, с малым чис-

лом элементов в каждом.

В соответствии с числом формирующихся в системе аттракторов вво-

дится понятие фаз:

— когерентная фаза (coherent) (состояние с одним кластером доминирует в

ансамбле),

— упорядоченная фаза (ordered) (состояния с небольшим количеством кла-

стеров имеют самую высокую вероятность),

— частично упорядоченная фаза (partially ordered) (кластеры с малым и

большим числом элементов появляются с сопоставимыми вероятностя-

ми)

— турбулентная фаза (turbulent) (число кластеров соответствует по порядку

величины общему количеству элементов системы).

1.2 Компьютерное моделирование системы глобально связанных ло-

гистических отображений

Для вычисления фазового состояния в текущий момент времени исполь-

зуется метод простых итераций [18], который работает только в случае сходя-

щегося решения. Поэтому обязательно отслеживается момент расходимости

системы.
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Использовался язык программирования Intel Fortran 19.1 c исполь-

зованием среды Visual Studio 2019 .

В ходе работы рассматривалась система n = 100 глобально связан-

ных отображений. Диапазон изменения параметров: параметр нелинейности

λ ∈ [0, 2] (в программе переменная a ), параметр диссипативной связи

εd ∈ [0, 0.5] (в программе — переменная e_d ), инерционной связи — εd ∈ [0, 0.5]

(в программе e_i ). Все диапазоны разделены на 100 итераций с шагом, со-

ответственно, ls = 0.02 для параметра нелинейности λ и es = 0.005 для

параметров связи.

Для определения количества получившихся кластеров используется функ-

ция распределения Q(K), где K — количество кластеров. Для получения ре-

зультата проводится M = 10 вычислений и полученный результат усредняет-

ся.

Для вычисления значений переменных x в каждой точке фазового про-

странства λ, εd, εi случайным образом задаются начальные значения из интер-

вала [0, 1].

Дискретные отображения характеризуются наличием переходного про-

цесса, т. е., для выхода на аттрактор должно пройти некоторое количество ите-

раций, поэтому мгновенные значения переменных определяются после 1250

итераций.

Количество получившихся кластеров определяется по следующему ал-

горитму:

1. Для вычисления значений переменных x[i] случайным образом зада-

ются начальные значения из интервала [0, 1].

2. Высчитываются значения элементов массива x[i] после 1250 итераций

(текущие состояния индивидуальных элементов).

3. В i -тый элемент массива d записывается количество элементов, равных

x[i] . Остальные элементы, равные x[i] , обнуляются.

4. Подсчитывается количество ненулевых элементов массива d . Это и бу-

дет число кластеров ncl для данного этапа вычислений.

5. Увеличивается на единицу значение q[ncl] — функция распределения

кластеров Q(K).

6. Шаги 1–5 повторяются M = 10 раз. После этого значения массива q

нормализуются.
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В результате в массиве q записаны какие состояния возникали в дан-

ной системе ( q[i] > 0 означает, что при расчетах встречалось i-кластерное

состояние).

Фаза определяется следующем образом:

Когерентная фаза содержит только один кластер, следовательно, q[1] = 1

Упорядоченная фаза содержит малое число кластеров. Для этого находим

две суммы sdon =
N
2∑

j=1

q[j] (число кластеров < 50) и spon =
N∑
j=N

2

q[j]

(число кластеров > 50). Если spon равно нулю и q[1] меньше единицы,

значит в системе реализована упорядоченная фаза (состояния с больших

числом кластеров не встречались).

Частично упорядоченная фаза Если обе суммы spon и sdon больше нуля,

следовательно, встречаются как состояния с малым числом кластеров,

так и состояния с большим числом кластеров. Это частично упорядо-

ченная фаза.

Турбулентная фаза Сумма spon равна единице, сумма sdon равна нулю.

Следовательно, в системе встречаются только состояния с большим чис-

лом кластеров. А это соответствует турбулентной фазе.

Полученные результаты записываются в файл в следующем формате

e_d, e_i, a, col , где col — количество кластеров при данных значениях

управляющих параметров. Значение col , равное единице, отвечает за коге-

рентную фазу и обозначается на диаграмме синим цветом, в случае, если ко-

личество кластеров 2 6 ncl 6 10, в файл записывается количество кластеров

и на диаграмме они обозначаются различными оттенками зеленого и голубого

цветов, в случае, если 10 6 ncl 6
N

2
, в файл записывается значение col ,

равное 11 и на диаграмме это состояние обозначается цветом GreenYellow .

В случае частично упорядоченной фазы в файл записывается значение col ,

равное 12 и обозначается желтым цветом. Турбулентной фазе соответствует

значение col , равное 14 и красный цвет на диаграмме. Режиму расходимо-

сти соответствует значение col , равное 15 и белый цвет. Полученный файл

содержит 1000000 строк (100× 100× 100) и имеет размер около 80Мб.

Время выполнения расчетов занимает около 20 минут. Разработать па-

раллельный алгоритм не удалось. Наличие среднего поля, зависящего от теку-
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щих значений всех элементов системы, не позволяет провести корректные па-

раллельные вычисления. Если распараллелить вычисления таким образом, что

значения различных элементов системы будут считаться на разных потоках, то

время работы не уменьшается и результат не соответствует не параллельному

алгоритму.

1.3 Результаты компьютерного моделирования

На рисунке 2 представлены фазовые диаграммы в сечении пространства

параметров плоскостью εd − εi при различных значениях параметра нелиней-

ности λ. На рисунке 2a представлен случай, когда одномерное логистическое

отображение демонстрирует первое удвоение периода (λ = 0.75). Видно, что

увеличение параметра диссипативной связи приводит к полной синхрониза-

ции системы (демонстрируется когерентное поведение), увеличение параметра

инерционной связи приводит к появлению двукластерного состояния. Увеличе-

ние параметра нелинейности приводит к появлению более сложной динамики:

появляется турбулентная фаза, а также режим расходимости (рисунки 2b–c).

Видно, что частично упорядоченная фаза появляется даже при переходе от

однокластерного состояния к двукластерному (рисунок 2d), что подтверждает

предположение о том, что эта фаза действительно возникает из-за увеличения

времени переходного процесса.

Рисунок 2 – Фазовые диаграммы в сечении пространства параметров глобально связанных
логистических отображений плоскостью εd − εi при различных значениях параметра

нелинейности λ. Символы обозначают фазы: С — когерентная, O — упорядоченная, T —
турбулентная.
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1.4 Системы глобально связанных отображений под действием шу-

ма

Реальные системы часто находятся под действием различных отклоне-

ний, поэтому возникает вопрос останется ли феномен кластеризации, если

система будет находится под действием шума.

Рассматривается равномерный шум, с интенсивностью от −0.5 до 0.5.

Система содержит 100 элементов, погруженных в общее среднее поле. Воз-

можно два типа введения шума. Первый — это идентичный шум, т. е., когда

каждый элемент находится под воздействием шума одинаковой амплитуды и

интенсивности. Второй — неидентичный шум, когда к каждому элементу до-

бавлен шум различной интенсивности.

Система (3) под действием идентичного шума имеет вид

xn+1(i) = (1−ε1)f(xn(i))−ε2xn(i)+
ε1
N

N∑
j=1

f(xn(j))+
ε2
N

N∑
j=1

xn(j)+εsηn, (4)

Система (3) под действием неидентичного шума:

xn+1(i) = (1−ε1)f(xn(i))−ε2xn(i)+
ε1
N

N∑
j=1

f(xn(j))+
ε2
N

N∑
j=1

xn(j)+εsηn(i), (5)

где εs — амплитуда шума, η — равномерно распределенный шум.

На рисунке 3 представлены фазовые диаграммы при амплитуде шума

εs = 0.001 для случая неидентичного (a, b) и идентичного (c, d) шума. Сле-

ва показан случай чисто диссипативной, справа — чисто инерционной связи.

Здесь цифрами и различными цветами показаны состояния с различным чис-

лом кластеров (от 1 до 10), упорядоченная фаза с большим числом класте-

ров (10–50), буквами PO— частично упорядоченная и Ò— турбулентная фаза.

Видно, в случае идентичного шума для такой малой амплитуды изменений

в процессе формирования кластеров не наблюдается. В случае диссипатив-

ной связи происходит большее размывание границ перехода от одной фазы

к другой, чем в случае инерционной связи. В случае неидентичного шума

кластеризации не наблюдается, система может демонстрировать только тур-

булентную и частично упорядоченную динамику (где число кластеров > 50).

Видно, что при наличии неидентичного шума система с глобальной связью
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Рисунок 3 – Фазовые диаграммы для системы (5) (a – b и e – f) для случая неидентичного
шума и системы (4) (c – d) для случая идентичного шума. Слева — для чисто диссипативной

глобальной связи, справа — для чисто инерционной глобальной связи

в области когерентного состояния демонстрирует частично упорядоченную

динамику, другие фазы приводят к режиму полной асинхронности.

Поэтому, в случае неидентичного шума нельзя говорить о кластерах, так

как к каждому элементу добавлена своя шумовая добавка и самопроизвольного

совпадения мгновенных состояний элементов не происходит. Однако, можно

говорить о «кластерах», как о группах элементов, совпадающих с опреде-

ленной точностью δ. На рисунке 3 (e, f) показаны фазовые диаграммы для

«кластеров», совпадающих с точностью δ = 0.001. Видно, что имеются упо-

рядоченные состояния с большим числом «кластеров», причем в случае инер-

ционной связи наблюдаются области и с меньшим количеством «кластеров»,

что говорит о том, что система с инерционной глобальной связью оказывается

более устойчивой к влиянию шума, чем система с диссипативной глобальной

связью.

Таким образом было проведено параметрическое исследование системы

отображений с двумя типами глобальной связи. Было проведено исследова-

ние влияния диссипативной и инерционной связи на динамику системы (2).
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Показано, что увеличение диссипативной связи приводит к синхронизации

системы, в то время, как инерционная связь стремится увеличить количество

кластеров в системе.

Наличие шума в системе глобально связанных отображений приводит к

нарушению режима кластеризации в случае неидентичного шума и «размы-

ванию» областей перехода от одного режима к другому в случае идентичного

шума. Но при введении понятия «кластера» оказывается, что наличие дисси-

пативной связи приводит к более быстрому разрушению кластеризации, чем

в случае инерционной связи. При наличии шума также наблюдается режим

универсальности и скейлинга, следовательно, системы глобально связанных

отображений вида (2) действительно демонстрируют универсальное поведе-

ние и могут использоваться для описания реальных дискретных моделей.
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2 Параметрический анализ системы глобально связанных

осцилляторов

2.1 Осцилляторы, демонстрирующие нелинейную динамику, с гло-

бальной связью

В качестве примера рассмотрим систему, связь в которой выбрана до-

статочно сложным способом, чтобы она являлась заведомо нелинейной. Это

N глобально связанных осцилляторов Ландау-Стюарта [19]:

Ȧk = (1 + iωa)Ak − |Ak|2Ak + eiξ,

Ḃ = −γB + iωbB + iη|B|2B +
ε

N

N∑
k=1

Ak,
(6)

где N = 100 — число элементов в системе, Ak — динамические переменные,

B — переменная, отвечающая за глобальную связь, ξ — фаза, ωa, ωb — собствен-

ные частоты, соответственно осцилляторов и переменной глобальной связи,

γ — параметр диссипации, η — параметр нелинейности, ε— параметр глобаль-

ной связи.

Переменные являются комплексными, поэтому, реальная размерность

системы N0 = 2N + 2. Принимая, A = ar + iai, B = br + ibi , перепишем

систему (6) в реальных переменных:

˙ark = ark − ωaaik − (a2rk + a2ik)ark + (cos ξ − sin ξ)br,

˙aik = aik − ωaark − (a2rk + a2ik)aik + (cos ξ + sin ξ)bi,

ḃr = −γbr − ωbbi− η(b2r + b2i )bi +
ε

N

n∑
k=1

ark,

ḃi = −γbi − ωbbr − η(b2r + b2i )br +
ε

N

n∑
k=1

aik.

(7)

В работе [19] для значений управляющих параметров ωa = ωb = 1, γ =

5, η = 1000, ξ = 0.475π было теоретически рассчитано значение бифуркаци-

онного параметра глобальной связи. При ε > εq = 0.099 в системе происходит

потеря синхронности.
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2.2 Компьютерное моделирование системы глобально связанных ос-

цилляторов Ландау-Стюарта

Моделирование проводилось в среде Video Studio 2019 на языках

программирования Intel Fortran 19.1 (вычисления) и C++ (визуализация).

Для численного решения дифференциальных уравнений выбран метод

Рунге-Кутта 4 порядка [18]. Полный код метода приведен в приложении ?? в

файле RK4.f90 . Шаг метода 0.05, проводится 10000 итераций.

Параметры, используемые в ходе моделирования: wa — собственная ча-

стота осцилляторов (ωa в уравнении (7)), wb — собственная частота перемен-

ной глобальной связи (ωb), g — параметр диссипации (γ), f — фаза (ξ), r —

параметр нелинейности (η), e — параметр глобальной связи (ε).

Для простоты все значения переменных ark, aik, br, bi уравнения (7) запи-

сываются в один массив y размерностью k = 2n + 2 . Первые n элементов

массива соответствуют реальным значениям динамических переменных Ak,

следующие n элементов массива соответствуют мнимым значениям динами-

ческих переменныхAk, последние два элемента — реальное и мнимое значение

переменной B, отвечающей за глобальную связь уравнения (6).

Начальные значения переменных задаются для каждого изменения пара-

метров системы. Для j -ого осциллятора реальное значение равно sin(
2π

n
× j),

для мнимого — cos(
2π

n
×j). Для переменной, отвечающей за глобальную связь,

реальное значение выбирается случайным образом в диапазоне [0.1, 1.1].

Вычисления проводились для 100 осцилляторов. Переходной процесс

занимал 100 итераций, для окончательных вычислений проводилось также 100

итераций. Рассчитывалась амплитуда среднего поля ( aml ) (K =
√
b2r + b2i ) и

минимальное расстояние между кластерами ( amin ).

2.3 Трехпараметрический анализ системы глобально связанных ос-

цилляторов Ландау-Стюарта

На основе проведенных исследований был сделан вывод о том, что ос-

новными параметрами исследования являются параметр глобальной связи ε,

параметр диссипации γ и фаза ξ. На примерах ниже проведен анализ систе-

мы (7) при значениях собственной частоты осцилляторов ωa = 1, собственной

частоты среднего поля ωb = 2.5, параметра нелинейности η = 0.5.

Вычисления проводились для следующих диапазонов параметров: пара-

14



метр глобальной связи — 0.05 6 ε 6 6, параметр диссипации — 0 6 γ 6 15,

фаза — 0 6 ξ 6 π.

Шаг вычислений δi =
xmax − xmin

100
, где xmin — это минимальное значе-

ние, а xmax — максимальное значение изменяемых параметров, следовательно,

для параметра глобальной связи сдвигу на один пиксел на экране соответству-

ет сдвиг на 0.0595 в мировых координатах; для параметра нелинейности шаг

равен 0.15, шаг для фазы равен 0.01.

Всего проводится 100× 100× 100 вычислений. Результаты вычислений

заносятся в файл формата ε, γ, ξ,K, dist, где dist— минимальное расстояние

между кластерами. Полученный файл содержит 1000000 строк и имеет размер

118 Мб.

Расчеты требуют существенных временных затрат. Так как присутству-

ет глобальная связь, использовать параллельные алгоритмы нецелесообразно,

так как появляются ошибки вычислений из-за того, что необходимо вычис-

лять среднее поле, которое содержит текущие значения всех динамических

переменных. Метод Рунге-Кутта при текущих параметрах метода производит

10000 итераций, на каждой итерации четыре раза вычисляются значения мас-

сива размерностью 202, следовательно, для каждого значения пространства

параметров (ε− γ − ξ) требуется выполнить 1.6× 109 вычислений. Всего вы-

полняется ≈ 2 × 1015 вычислений. Вычисления проводились для параметра

глобальной связи были поделены на четыре части (от 0 до 24 шага, от 25 до

49 шага, от 50 до 74 шага и от 75 до 99 шага) и вычислялись параллельно.

Расчеты заняли в районе четырех суток ±2 часа.

Для визуализации вычислений было построено приложение с использо-

ванием Windows Forms в среде Visual Studio 2019 на языке Ñ++ .

Приложение содержит три поля NumericUpDown , с помощью которых

выбираются текущие значения параметров. Минимальные, максимальные зна-

чения и шаг измерений совпадают с записанными в файл. Значения параметров

выбираются с помощью стрелок поля. Вручную вводить данные нецелесооб-

разно, так как сложно выбрать значения, которые совпали бы с записанными в

файле. На трехмерном рисунке справа красными линиями показаны проекции

карты синхронизации, которые будут строится.

При нажатии на кнопку «Выбрать координаты» предлагается выбрать

необходимый файл. Все строки файла записываются в три вектора вида

15



vector<list<float>> .

Для каждого вектора фиксируется один из исследуемых параметров (рав-

ный выбранным значениям в соответствующем поле NumericUpDown ), осталь-

ные два параметра и минимальное расстояние между кластерами записыва-

ются в список list<float> tmp . Амплитуда среднего поля записывается в

файл, но для данного исследования не используется. Полученный список до-

бавляется в соответствующий вектор. Каждый вектор в итоге содержит 10000

элементов типа list<float> .

После заполнения векторов рисуется три проекции (ε − ξ, ε − γ, γ − ξ)
карты синхронизации размером 100× 100.

При различных значениях фиксированных параметров на картах синхро-

низации наблюдаются различные типы перехода от синфазного к несинфазно-

му состоянию: процесс является циклическим, но линия перехода становится

более извилистой (рисунок 4). Видно, что при малых значениях фазы система

глобально связанных осцилляторов Ландау-Стюарта демонстрирует синфаз-

ный режим (области несинфазного режима становятся тоньше)

Рисунок 4 – Проекции карты синхронизации при фиксированных значениях параметров
γ = 7.35 (верхняя проекция), ξ = 0.37 (средняя проекция), ε = 1, 716 (нижняя проекция)

Таким образом, проведенный анализ продемонстрировал наличие слож-

ных конструкций при переходе от синфазного к несинфазному режиму, по-

казал, что такой переход является циклическим и что малое значение фазы

приводит к расходимости решения системы глобально связанных осциллято-

ров Ландау-Стюарта.
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ЗАКЛЮЧЕНИЕ

В данной работе было проведено исследование систем, демонстрирую-

щих сложную динамику, с глобальной связью.

В качестве дискретной системы были выбраны системы логистических

отображений с двумя типами глобальной связи: диссипативной и инерцион-

ной. Был проведен анализ динамики такой системы на пространстве «пара-

метр, отвечающий за нелинейность — параметр, отвечающий за диссипатив-

ную связь — параметр, отвечающий за инерционную связь».

Было показано, что

1. В данной системе реализуется переход от когерентного (в системе реали-

зован один кластер) состояния к турбулентному (в системе отсутствует

режим кластеризации). Диссипативная связь приводит к большей син-

хронизации системы, увеличение параметра связи приводит к увеличе-

нию области когерентного и упорядоченного состояния (с малым числом

кластеров) на пространстве параметров. Инерционная связь, наоборот,

приводит к большей раассинхронизации системы. Область синхронных

состояний уменьшается, но наблюдаются области синфазного состояния

в области значений параметра нелинейности, где индивидуальное логи-

стическое отображение демонстрирует хаотическую динамику.

2. Наличие в системе глобально связанных отображений идентичного шу-

ма (когда к каждому элементу добавлен шум одинаковой амплитуды и

интенсивности) не приводит к разрушению кластеризации. Увеличение

амплитуды шума приводит к размыванию границы переходов от одного

состояния к другому.

3. Наличие в данной системе неидентичного шума (к каждому элементу

добавлен шум различной интенсивности) приводит к полному разруше-

нию режима кластеризации. Однако можно говорить о «кластерах», как

о состояниях, совпадающих с определенной точностью. Если точность

совпадает с амплитудой шума, в системе реализуются режимы «класте-

ризации», подобные динамике системы в отсутствии шума.

4. В системе глобально связанных отображений реализуется скейлинг: если

система в какой-то точке пространства параметров демонстрирует опре-

деленное поведение, то пересчет начальных условий и всех параметров

на определенные значения, приводит к той же динамике.
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В качестве непрерывной системы глобально связанных осцилляторов

использовались осцилляторы Ландау-Стюарта.

Было показано, что

1. Система демонстрирует синфазный, когда в системе реализован один

или несколько кластеров, и несинфазный режимы. В случае синфазного

режима минимальные расстояния между индивидуальными элементами

равны нулю, а амплитуда среднего поля, наоборот, отлична от нуля. В

случае несинфазного режима амплитуда среднего поля равна нулю.

2. Было исследовано поведение системы с глобальной связью от параметра

глобальной связи и определены некоторые значения данного параметра

при переходе от синфазного к несинфазному режиму в зависимости от

значений других управляющих параметров.

3. Была построена карта синхронизации на пространстве параметров «па-

раметр глобальной связи — параметр диссипации — параметр, отвечаю-

щий за фазу». Показано, что линия перехода от синфазного к несинфаз-

ному режимы имеет сложную конструкцию, малое значение параметра,

отвечающего за фазу, приводит к расходимости данной системы и пере-

ход от синфазного к несинфазному режиму является циклическим.

В дальнейшем планируется исследовать кластеры на устойчивость и бо-

лее подробно исследовать динамику полученных состояний.
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