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Введение.При построении математических моделей физических задач

мы неизбежно сталкиваемся с тем, что исходные данные этих задач всегда за-

даны приближённо, поскольку получаются в результате измерений. Поэтому

функции, являющиеся исходными данными, нуждаются в предварительной

математической "обработке". Это приводит к двум классам задач. То есть вы-

деляется класс задач, решения которых неустойчивы к малым изменениям

исходных данных. Они характеризуются тем, что сколь угодно малые измене-

ния исходных данных могут приводить к произвольно большим изменениям

решений. Задачи подобного типа, по существу, являются плохо поставленны-

ми. Они принадлежат к классу некорректно поставленных задач.

Целью данной работы - изучение методов приближенного решения уравне-

ния Абеля в случае, когда его правая часть задана с погрешностью. Работа

состоит из введения, двух глав, заключения, списка используемых источни-

ков.

В первой главе даётся определение некорректно поставленной задачи, при-

водится известная информация об уравнении Абеля, и приводится постав-

леновка задачи приближенного решения этого уравнения. Далее приводятся

известные подходы к решению указанного уравнения и особое внимание уде-

ляется методам регуляризации.

Во второй главе описывается метод регуляризации, построенный на базе опе-

раторов Стеклова: даётся теоретическое обоснование, указывается способ вы-

бора параметра регуляризации.

Основное содержание работы.Основная часть состоит из двух глав.

В первой главе вводятся основные определения, связанные с некорректными

задачами, решением уравнений первого рода, описываются методы решения

интегрального уравнения Абеля.

Некорректно поставленные задачи. Различают корректно поставлен-

ные, и некорректно поставленные задачи. Понятие корректной постановки

задач математической физики было введено Адамаром следующим образом.
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Определение 1.1. Математическая задача называется поставленной кор-

ректно, если её решение существует, единственно и непрерывно зависит от

исходных данных.

Из определения следует, что задача будет являться некорректно поставлен-

ной, если не выполняется хотя бы одно из сформулированных требований. В

дальнейшем мы будем понимать некорректность именно в смысле отсутствия

непрерывной зависимости решения от исходных данных.

Интегральные уравнения. Интегральными уравнениями обычно называ-

ют уравнения, содержащие неизвестную функцию под знаком интеграла.

Абель получил один из первых результатов, который можно связать с ин-

тегральными уравнениями, рассматривая такую задачу: материальная точка

под действием силы тяжести движется в вертикальной плоскости (𝜉, 𝜂), по

некоторой кривой. Требуется определить эту кривую так, чтобы материаль-

ная точка, начав своё движение без начальной скорости в точке кривой с

ординатой 𝑦, достигла оси 𝜉 за время 𝑡 = 𝑓(𝑦), где функция 𝑓(𝑦) задана

заранее. Уравнение Абеля имеет вид:
𝑦∫︁

0

𝜑(𝜂)𝑑𝜂√
𝑦 − 𝜂

= −
√︀

2𝑔𝑓(𝑦)

Позднее стали рассматриваться различные обобщения уравнения Абеля, одно

из них
𝑥∫︁

0

(𝑥− 𝑡)𝛽−1

Γ(𝛽)
𝑈(𝑡)𝑑𝑡 = 𝑓(𝑥)

Метод Филлипса- Туоми. Попытки решения некорректно поставленных

задач, формулируемых с помощью операторного уравнения 𝐴𝑢 = 𝑓, без вне-

сения дополнительной априорной информации о решении приводят к появ-

лению высокочастотных осциляций в спектре ̃︀𝑢(𝜔) и, как следствие, к неудо-

влетворительному восстановлению 𝑢(𝑥). Филипс, проанализировал характер

этих осциляций, отождествил их с аномально большими значениями произ-

водных 𝑑2𝑢(𝑥)/𝑑𝑥2 и построил регуляризующий алгоритм: необходимо из се-
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мейства фозможных решений 𝑢(𝑥) выбрать наиболее "гладкое"в смысле ми-

нимизации нормы производной
𝑏∫︀
𝑎

(𝑑𝑢/𝑑𝑥)2𝑑𝑥−𝑚𝑖𝑛. Если при этом 𝜌(𝐴𝑢, 𝑓)-

мера уклонения регистрируемой функции f от точной Au, то можно показать,

что указанный минимум достигается на границе области, определяемой нера-

венством

𝜌(𝐴𝑢, 𝑓) 6 𝜌0

т.е. когда 𝜌 = 𝜌0. Соответствующая задача на условный экстремум, решаемая

методом Лагранжа, описывается уравнением

𝜌(𝐴𝑢, 𝑓) + 𝛼

𝑏∫︁
𝑎

(𝑑𝑢/𝑑𝑥)2𝑑𝑥−𝑚𝑖𝑛,

где 𝛼 - неопределённый множитель, который, согласно Филлипсу, следует на-

ходить из условия 𝜌 = 𝜌0.

Итерационная схема Ван-Циттерта.Известен метод, предложенный Ван-

Циттертом и развитый в дальнейшем Ван-Циттертом и Бругером.Идея мето-

да исключительно проста: алгоритм можно охарактеризовать такой последо-

вательностью операций: 1) в качестве нулевого приближения берём 𝜑(0)(𝑥) =

𝑓(𝑥); 2)𝑓 (𝑛)(𝑥) = 𝜑(𝑛)(𝑥) ⊗ 𝐾(𝑥), где ⊗ - символ операции свёртки; 3)𝜑(𝑛 +

1)(𝑥) = 𝜑(𝑛)(𝑥) + [𝑓(𝑥) − 𝑓 (𝑛)(𝑥)]; 4)𝑛→ (𝑛+ 1); 5) переходим к пункту 2.

Удобство метода состоит в том, что для каждой конкретной установки и вы-

бранного порядка приближения члены
𝑁∑︁
𝑖=1

𝐶𝑚+1
𝑁+1(−1)𝑚𝐾(𝑁)(𝑦)

легко рассчитать заранее. Выбор 𝑁 ) осуществляется полуинтуативно, руко-

водствуясь соображениями о реальной либо фиктивной природе тех деталей

решения 𝜑(𝑥), которые возникают по мере роста числа итераций.

Сплайновая аппроксимация. Отдельного рассмотрения заслуживает ис-

пользование при решении обратных задач особых степенных полиномов-сплайнов.

Применение таких полиномов весьма эффективно, при решении тех инте-

гральных уравнений, для которых известны аналитические обращения, как
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это имеет место для преобразования Абеля. Тогда известная функция ап-

проксимируется сплайном и полученное выражение подставляется в форму-

лу обращения уравнения Абеля. Основную трудность представляет выбор

параметра сглаживания 𝛼,. На практике, параметр сглаживания полагается

равным единице, либо подбирается интуитивно.

Метод регуляризации Тихонова. Тихонов разработал эффективный спо-

соб преобразования некорректной задачи в корректную за счёт стабилиза-

ции минимума среднеквадратичного уклонения 𝐴𝑢 от заданной правой ча-

сти 𝑓 при помощи вспомогательного параметрического функционала. Тихо-

нов ввёл важное понятие регуляризующего оператора 𝑅(𝑓, 𝛼) для уравнения

𝐴𝑢 = 𝑓, который обладает следующими свойствами: а) он определён для

всякого 𝛼 > 0, а также любого 𝑓 ∈ 𝐹 и непрерывен по 𝑓 ; б) если 𝛿 - по-

грешность исходных данных 𝑓𝛿, то существуют такая функция 𝛼(𝛿) и такое

число 𝛿(𝜖) (для любого 𝜖 > 0), что при 𝜌𝐹 (𝑓, 𝑓𝛿) 6 𝛿(𝜖) выполнится соотно-

шение 𝜌𝑈(𝑢, 𝑢𝛼) 6 𝜖, где 𝑢𝑎𝑙𝑝ℎ𝑎 = 𝑅(𝑓𝛿, 𝛼(𝛿)). Тем самым задача сводится,

во-первых, к нахождению регуляризующих операторов 𝑅(𝑓, 𝛼) и, во-вторых,

к определениюпараметра регуляризации 𝛼 по той или иной дополнительной

информации о задаче.

Достоинство метода логической прозрачности. Однако существуют некото-

рые недостатки: 1) Метод требует достаточно точного знания погрешности

𝛿. 2) Нахождение 𝛼 по невязке даже в случае, когда оператор 𝐴 линейный, а

пространство 𝐹 гильбертово, может оказаться неоднозначным.

Проекционная схема Танабы - Хуанга. Идея метода, разработанного Та-

набой и Хуангом, сводится к следующему. Перейдём от исходного уравнения

𝐴𝑢 = 𝑓 к его алгебраизованной версии
𝑁∑︁
𝑖=1

𝐴𝑚𝑖𝑢𝑖 = 𝑓𝑚, 𝑚 = 1, 2, . . . ,𝑀. (1)

Будем рассматривать 𝑢 = (𝑢1, 𝑢2, . . . , 𝑢𝑁) как вектор в N-мерном простран-

стве, а каждое из M уравнений в 1 - как гиперплоскость. Пусть выбрано
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некое начальное приближение 𝑢(0). Следующее приближенное решение 𝑢(1)

найдётся как проекция 𝑢(0) на первую гиперплоскость

𝑢(1) = 𝑢(0) − [(𝑢(0)·𝐴1 − 𝑓1)𝐴1]/𝐴1·𝐴1 (2)

где 𝐴1 = (𝐴11, 𝐴12, . . . , 𝐴1𝑁), а скалярное произведение обозначено точкой.

Затем вычислим проекцию 𝑢(2), используя в соответствии с 2 векторы 𝑢(1),

𝐴2 = (𝐴21, 𝐴22, 𝑙𝑑𝑜𝑡𝑠, 𝐴2𝑁) и так далее, покане дойдём до 𝑢(𝑀). Тем самым

первый цикл итераций закончен. Далее повторяем весь первый цикл, исходя

из 𝑢(𝑀), получив в результате 𝑢(2𝑀) и так далее. Танабой и Хуангом показано:

a) Векторная последовательность 𝑢(0), 𝑢(𝑀), 𝑢(2𝑀), 𝑢(3𝑀), . . . всегда сходитсяд-

ля любых 𝑁,𝑀 и 𝐴𝑚𝑖, причём

lim
𝑛→∞

𝑢(𝑛𝑀) = 𝑢 (3)

если система уравнений 1 имеет единственное решение; б) если система 1 име-

ет бесконечное множество решений, то 𝑢 будет решением, минимизирующим

норму невязки

||𝑢− 𝑢(0)|| =

{︃
𝑁∑︁
𝑖=1

(𝑢𝑖 − 𝑢
(0)
𝑖 )2

}︃1/2

. (4)

Иными словами, даже при бесконечном множестве решений мы можем наде-

яться на получение приемлемого, физически разумного решения, если нач-

нём с хорошего приближения 𝑢(0); в) проекционный метод допускает введение

самой разнообразной информации о решении: ограниченности, неотрицатель-

ности, монотонности и т.п.

Метод Лаврентьева. Уравнения вида 𝐴𝑢 = 𝑓 , в которых правая часть

f ∈ B (f𝛿, 𝛿) ̸= AM, изучались М.М. Лаврентьевым. Ему принадлежит идея

замены исходного уравнения близким ему, в некотором смысле, уравнением,

для которого задача нахождения решения устойчива к малым изменениям

правой части и разрешима для любой правой части.

Пусть 𝐴𝑢 = 𝑓 , где 𝑢 - неизвестная функция, но предполагается её существо-

вание и единственность. Оператор 𝐴 компактен, поэтому обратный опера-

тор 𝐴−1 неограничен. Априорно известно, что ||𝐴𝑢 − 𝑓𝛿|| 6 𝛿. Как обычно,
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считаем, что 𝑢 ∈ 𝐷(𝐴). На множестве 𝐷(𝐴) мы можем выделить множе-

ство возможных решений 𝑀 . Функция 𝑓 может как принадлежать, так и не

принадлежать множеству 𝐴𝑀 . То есть уже по постановке это существенно

некорректная задача. М.М. Лаврентьев предложил решать вместо уравнения

𝐴𝑢 = 𝑓 следующую задачу:

(𝐴+ 𝛼𝐸)𝑢 = 𝑓𝛿, (5)

где 𝑓𝛿 ∈ 𝐹 , 𝐴 - компактный симметричный положительный оператор.

Теорема 1.4. Семейство операторов

𝑅𝛼 = (𝐴+ 𝛼𝐸)−1 (6)

является регуляризирующим для уравнения 𝐴𝑢 = 𝑓 .

Теорема 1.5. Пусть 𝐴 : 𝐻 → 𝐻 - компактный самосопряженный положи-

тельный оператор, 𝛼 = 𝛼(𝛿) → 0 при 𝛿 → 0 и имеет менее высокий порядок

малости. Тогда приближённое решение 𝑢𝛿𝛼 = (𝐴 + 𝛼𝐸)−1𝑓𝛿 непрерывно за-

висит от правой части.

Вторая глава посвящается методу регуляризации, построенному на

привлечении операторов Стеклова – дается теоретическое обоснование, ука-

зывается, как выбирать параметр регуляризации.

Понятие разрывного оператора Cтеклова. В. А. Стеклов ввёл в рас-

смотрение оператор 1
𝛼

𝑥+𝛼∫︀
𝑥

𝑓(𝑡)𝑑𝑡, который был назван его именем. Наряду с

ним оператором Стеклова также называются операторы 1
𝛼

𝑥∫︀
𝑥−𝛼

𝑓(𝑡)𝑑𝑡 и 1
2𝛼

𝑥+𝛼∫︀
𝑥−𝛼

𝑓(𝑡)𝑑𝑡.

Мы будем называть первый из них правосторонним оператором Стеклова,

второй — левосторонним, третий — симметричным оператором Стеклова. По-

строим разрывный оператор Стеклова следующим образом. Возьмём право-

сторонний оператор Стеклова, но будем рассматривать его на отрезке [1/2, 1],

а левосторонний — на отрезке [1/2, 1], т.е. построим оператор

𝑆𝛼𝑓 =

⎧⎪⎪⎨⎪⎪⎩
1
𝛼

𝑥+𝛼∫︀
𝑥

𝑓(𝑡)𝑑𝑡 = 𝑆𝛼2𝑓, 𝑥 ∈ [0, 1/2]

1
𝛼

𝑥∫︀
𝑥−𝛼

𝑓(𝑡)𝑑𝑡 = 𝑆𝛼1𝑓, 𝑥| ∈ [1/2, 1]
(7)

Такая запись предполагает, что мы считаем несущественным, какие именно
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значения приписывать функции 𝑆𝛼𝑓 при 𝑥 = 1/2.Потребуем, чтобы значения

этого оператора не выходили за границы отрезка, т.е. чтобы выполнялись

неравенства
1

2
+ 𝛼 6 1 и

1

2
− 𝛼 > 0 (8)

Отсюда получим несущественное ограничение на 𝛼 : 𝛼 6 1/2. Функции 𝑆𝛼𝑓

терпят разрыв 1-го рода в точке 𝑥 = 1/2. Поэтому мы будем их рассматривать

как элементы подпространства из 𝐿∞[0, 1] с нормой:

‖ · ‖𝐿∞ = max
(︀
‖ · ‖𝐶[0,1/2], ‖ · ‖𝐶[1/2,1]

)︀
(9)

Теорема 2.1. Для любой 𝑓(𝑥) ∈ 𝐶[0, 1] имеет место сходимость

‖𝑆𝛼𝑓 − 𝑓‖𝐿∞
→ 0, 𝛼→ 0

Основные принципы построения методов регуляризации для урав-

нений 1-го рода. Рассмотрим уравнение

𝐴𝑢 = 𝑓 (10)

где 𝐴 — линейный ограниченный оператор, действующий из банахова про-

странства 𝑋1 в банахово пространство 𝑋2. Считаем, что 𝐴
−1 существует, но

неограничен. В этом случае уравнение (10) называется уравнением 1-го ро-

да. Считается, что точная правая часть 𝑓 нам неизвестна (так и бывает при

решении прикладных задач), а вместо неё известно 𝛿-приближение к 𝑓 , т.е.

последовательность элементов 𝑓𝛿 такая, что ‖𝑓𝛿 − 𝑓‖𝑋2
6 𝛿. Требуется по 𝑓𝛿

и 𝛿 построить такую последовательность элементов 𝑢𝛿, чтобы ‖𝑢𝛿 − 𝑢‖𝑋1
→ 0

при 𝛿 → 0. Для получения решения поставленной задачи, применяются спе-

циальные методы, называемые методами регуляризации.Они состоят из двух

принципиальных моментов: 1) построение семейства линейных операторов

𝑅𝛼 , зависящих от параметра 𝛼, действующих из пространства𝑋2 в простран-

ство 𝑋1 и обладающих свойствами: а) каждый из операторов 𝑅𝛼 определён

на всем пространстве 𝑋2; б)‖𝑅𝛼‖𝑋2→𝑋1
6 ∞ при каждом значении 𝛼M; в)

при 𝛼 → 0

‖𝑅𝛼𝑓 − 𝑢‖𝑋1
→ 0 (11)
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2) согласование параметра 𝛼 с погрешностью 𝛿 : 𝛼 = 𝛼(𝛿) такое, что 𝛼(𝛿) → 0:

𝛿
⃦⃦
𝑅𝛼(𝛿)

⃦⃦
𝑋2→𝑋1

→ 0 при 𝛿 → 0. (12)

Определение 2.1. Семейство линейных операторов 𝑅𝛼,𝛼 > 0 — параметр,

удовлетворяющее условиям (а)–(в), называется регуляризирующим семей-

ством для уравнения (10); параметр 𝛼 называется параметром регуляриза-

ции.

Лемма 2.1. Имеет место сходимость

‖𝑅𝛼‖𝑋2→𝑋1
→ ∞ при 𝛼 → 0. (13)

Определение 2.2. Погрешностью метода 𝑅𝛼(𝛿) в точке будем называть ве-

личину ∆
(︀
𝛿, 𝑅𝛼(𝛿), 𝑢

)︀
; погрешностью метода 𝑅𝛼(𝛿) на классе 𝑀 ⊂ 𝑋1 будем

называть величину ∆
(︀
𝛿, 𝑅𝛼(𝛿),𝑀

)︀
.

Теорема 2.2. Для сходимости ∆ (𝛿, 𝑅𝛼, 𝑢) → 0 при 𝛼 → 0, 𝛿 → 0 условия

(12) являются необходимыми и достаточными.

Теорема 2.3. При любых и имеет место двусторонняя оценка:
1

2
𝜙 (𝛿, 𝑅𝛼,𝑀) 6 ∆ (𝛿, 𝑅𝛼,𝑀) 6 𝜙 (𝛿, 𝑅𝛼,𝑀) (14)

где

𝜙 (𝛿, 𝑅𝛼,𝑀) = ∆1 (𝑅𝛼𝐴,𝑀) + 𝛿 ‖𝑅𝛼‖𝑋2→𝑋1
(15)

Г. В. Хромовой был предложен метод получения оценок погрешностей при-

ближенных решений, не улучшаемых по порядку 𝛿, и формул для согласова-

ния 𝛼 с 𝛿, обеспечивающего такие оценки. Этот метод схематически заклю-

чается в следующем: 1. Находится представление

∆1 (𝑅𝛼𝐴,𝑀) = 𝜙1(𝛼) + 𝜓1(𝛼) (16)

где 𝜓1(𝛼) = 𝑜 (𝜙1(𝛼)) при 𝛼 → 0, либо двусторонняя оценка

𝐶2𝜙1(𝛼) + 𝜓1(𝛼) 6 ∆1 (𝑅𝛼𝐴,𝑀) 6 𝐶1𝜙1(𝛼) + 𝜓1(𝛼) (17)

где 𝜓1(𝛼), 𝜓1(𝛼) суть 𝑜 (𝜙1(𝛼)); 2. Находятся аналогичное представление для

‖𝑅𝛼‖𝑋2→𝑋1
:

‖𝑅𝛼‖𝑋2→𝑋1
= 𝜙2(𝛼) + 𝜓2(𝛼) (18)
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либо оценка

𝐶3𝜙2(𝛼) + 𝜓2(𝛼) 6 ‖𝑅𝛼‖𝑋2→𝑋1
6 𝐶4𝜙2(𝛼) + 𝜓2(𝛼) (19)

где 𝜓2(𝛼), 𝜓2(𝛼) суть 𝑂 (𝜙2(𝛼)); 3. Составляется функция

Φ(𝛿, 𝛼) = 𝜙1(𝛼) + 𝛿𝜙2(𝛼)

и находится 𝛼 = 𝛼(𝛿) из условия Φ(𝛿, 𝛼) → inf𝛼.Тем самым определяется

метод 𝑅𝛼(𝛿); 4. Найденное согласование 𝛼 = 𝛼(𝛿) подставляется в оценку

(14). В результате получается оценка погрешности, точная по порядку 𝛿 и

не улучшаемая по порядку 𝛿 для данного метода регуляризации, поскольку

∆
(︀
𝛿, 𝑅𝛼(𝛿),𝑀

)︀
≃ inf𝛼 ∆ (𝛿, 𝑅𝛼,𝑀).

Хромовой был предложен метод регуляризации, использующий конструкцию

оператора 𝐴−1 и базирующийся на применении операторов из теории прибли-

жений. Он выглядит так: пусть 𝑇𝛼 (𝛼 — параметр) — семейство операторов,

действующих в пространстве 𝑋1 и таких, что ‖𝑇𝛼𝑢− 𝑢‖𝑋1
→ 0 при 𝛼 → 0

для любого 𝑢 ∈ 𝑋1 либо для любого 𝑢 ∈ 𝑀 ⊂ 𝑋1, если заранее известно,

что 𝑢 ∈ 𝑀 . Имеем 𝑇𝛼𝑢 = 𝑇𝛼𝐴
−1𝐴𝑢 ≡ 𝑅𝛼𝐴𝑢, где 𝑅𝛼 = 𝑇𝛼𝐴

−1 определён на

множестве значений оператора 𝐴.

Теорема 2.4. Если операторы 𝑅𝛼 можно продолжить так, что они будут

линейными ограниченными при каждом 𝛼, действующими из 𝑋2 в 𝑋1, то се-

мейство {𝑅𝛼} является регуляризирующим для уравнения (10).

Решение уравнения Абеля методом Хромовой. Рассматривается урав-

нение Абеля

𝐴𝑢 ≡
𝑥∫︁

0

(𝑥− 𝑡)𝛽−1

Γ(𝛽)
𝑢(𝑡)𝑑𝑡 = 𝑓(𝑥) (20)

где Γ(𝛽) — гамма-функция, 0 < 𝛽 < 1, 𝑢(𝑥) ∈ 𝒞[0, 1], 𝑓(𝑥) задана её 𝛿-

приближением в 𝐿2[0, 1] : ‖𝑓𝛿 − 𝑓‖𝐿2
6 𝛿. Решается задача нахождения рав-

номерных приближений к 𝑢(𝑥) по заданным 𝑓𝛿 и 𝛿. Для оператора 𝐴 известен

вид обратного оператора

𝐴−1𝑓 =
𝑑

𝑑𝑥

𝑥∫︁
0

(𝑥− 𝑡)−𝛽

Γ(1 − 𝛽)
𝑓(𝑡)𝑑𝑡 (21)

10



Этой формулой мы не можем воспользоваться, если 𝑓(𝑥) задана приближён-

но: 𝑓𝛿(𝑥). Мы рассматриваем постановку, в которой о решении 𝑢(𝑥) даётся

минимум информации (только его непрерывность), что делает невозможным

применение ни одного из классических методов решения некорректных за-

дач. В качестве 𝑇𝛼 возьмём операторы 𝑆𝛼 и построим семейство операторов

𝑅𝛼 = 𝑆𝛼𝐴
−1.

Теорема 2.5. Операторы 𝑅𝛼 являются интегральными операторами с ядра-

ми 𝑅𝛼(𝑥, 𝑡), имеющими вид

𝑅𝛼(𝑥, 𝑡) =

⎧⎨⎩ (𝛼Γ(1 − 𝛽))−1𝑅𝛼2(𝑥, 𝑡), 𝑥 ∈ [0, 1/2],

(𝛼Γ(1 − 𝛽))−1𝑅𝛼1(𝑥, 𝑡), 𝑥 ∈ [1/2, 1],
(22)

𝑅𝛼1(𝑥, 𝑡) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(𝑥− 𝑡)−𝛽 − (𝑥− 𝛼− 𝑡)−𝛽, 0 6 𝑡 < 𝑥− 𝛼2

(𝑥− 𝑡)−𝛽, 𝑥− 𝛼 6 𝑡 < 𝑥

0, 𝑥 6 𝑡 6 1

(23)

𝑅𝛼2(𝑥, 𝑡) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(𝑥+ 𝛼− 𝑡)−𝛽 − (𝑥− 𝑡)−𝛽, 0 6 𝑡 < 𝑥

(𝑥+ 𝛼− 𝑡)−𝛽, < 𝑥 ≤ 𝑡 < 𝑥+ 𝛼

0, 𝑥+ 𝛼 6 𝑡 6 1

(24)

Теорема 2.6. Операторы 𝑅𝛼𝑗, 𝑗 = 1, 2, при 0 < 𝛽 < 1/2 являются линейны-

ми, ограниченными при каждом значении 𝛼 операторами, действующими из

пространства 𝐿2[0, 1] в 𝐶[1/2, 1] при 𝑗 = 1 и в 𝐶[0, 1/2] при 𝑗 = 2. При этом

справедлива двусторонняя оценка

𝐶𝛽𝛼
− 2𝛽+1

2 6 ‖𝑅𝛼‖𝐿2→𝐿∞
6

√
2𝐶𝛽𝛼

− 2𝛽+1
2 (25)

где 𝐶𝛽 = (Γ(1 − 𝛽))−1(1 − 2𝛽)−1/2.

Теорема 2.7. Для сходимости ∆ (𝛿, 𝑅𝛼, 𝑢) → 0 при 𝛼 → 0, 𝛿 → 0 необходимо

и достаточно выполнения согласования 𝛼 = 𝛼(𝛿) такого, что 𝛼(𝛿) → 0 и

𝛿(𝛼(𝛿))−
2𝛽+1

2 → 0 при 𝛿 → 0.

Теорема 2.8. Справедлива неулучшаемая по порядку 𝛿 оценка
1

2
𝐶1(𝛽)𝛿

2
3+2𝐵 6 ∆

(︀
𝛿, 𝑅𝛼(𝛿),Lip𝑀 1

)︀
6 𝐶2(𝛽)𝛿

2
3+2𝛽 (26)
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где

𝛼(𝛿) = 𝐷(𝛽)𝛿
2

3+2𝛽 (27)

𝐷(𝛽) =
(︁

21/2𝑀−1𝐶𝛽(2𝛽 + 1)
)︁ 2

3+38

,

𝐶1(𝛽) =
𝑀

2
𝐷(𝛽) + 𝐶𝛽(𝐷(𝛽))−

2𝛽+1
2 ,

𝐶2(𝛽) отличается от 𝐶1(𝛽) множителем 2 во втором слагаемом,0 < 𝛽 < 1/2.

Лемма 2.3. Операторы 𝑆2
𝛼1 u 𝑆

2
𝛼2 имеют вид

𝑆2
𝛼1𝑓 = 1

𝛼2

[︂
𝑥−𝛼∫︀

𝑥−2𝛼

(2𝛼− (𝑥− 𝑡))𝑓(𝑡)𝑑𝑡+
∞∫︀

𝑥−𝛼

(𝑥− 𝑡)𝑓(𝑡)𝑑𝑡

]︂
,

𝑆2
𝛼2𝑓 = 1

𝛼2

[︂
𝑥+𝛼∫︀
𝑥

(𝑡− 𝑥)𝑓(𝑡)𝑑𝑡+
𝑥+2𝛼∫︀
𝑥+𝛼

(2𝛼− (𝑡− 𝑥))𝑓(𝑡)𝑑𝑡

]︂ (28)

(𝛼 6 1/4).

Теорема 2.9. Операторы 𝑅𝛼 являются интегральными операторами с ядра-

ми 𝑅𝛼(𝑥, 𝑡), имеющими вид

𝑅𝛼(𝑥, 𝑡) = 𝛼−22𝜋−1/2

⎧⎨⎩ 𝑅𝛼2(𝑥, 𝑡), 𝑥 ∈ [0, 1/2]

𝑅𝛼1(𝑥, 𝑡), 𝑥 ∈ [1/2, 1]
где

𝑅𝛼2(𝑥, 𝑡)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(𝑥− 𝑡)1−𝛽 − 2(𝑥− 𝑡+ 𝛼)1−𝛽 + (𝑥− 𝑡+ 2𝛼)1−𝛽, 0 6 𝑡 6 𝑥,

(𝑥− 𝑡+ 2𝛼)1−𝛽 − 2(𝑥− 𝑡+ 𝛼)1−𝛽, 𝑥 6 𝑡 6 𝑥+ 𝛼,

(𝑥− 𝑡+ 2𝛼)1−𝛽, 𝑥+ 𝛼 6 𝑡 6 𝑥+ 2𝛼,

0 𝑥+ 2𝛼 6 𝑡 6 1,

(29)

𝑅𝛼12(𝑥, 𝑡)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(𝑥− 𝑡− 2𝛼)1−𝛽 − 2(𝑥− 𝑡− 𝛼)1−𝛽 + (𝑥− 𝑡)1−𝛽, 0 6 𝑡 6 𝑥− 2𝛼,

(𝑥− 𝑡)1−𝛽 − 2(𝑥− 𝑡− 𝛼)1−𝛽, 𝑥− 2𝛼 6 𝑡 6 𝑥− 𝛼,

(𝑥− 𝑡)1−𝛽, 𝑥− 𝛼 6 𝑡 6 𝑥,

0 𝑥 6 𝑡 6 1,

(30)

0 < 𝛼 6 1/4

Теорема 2.10. Операторы 𝑅𝛼, рассматриваемые как операторы из 𝐿2[0, 1] в

𝐿∞[0, 1], являются регуляризирующими для уравнения (20) при любом 𝛽 из
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интервала (0, 1).

Теорема 2.11. Для норм операторов 𝑅𝛼 справедлива двусторонняя оценка

𝐶2𝛼
− 1+2𝛽

2 6 ‖𝑅𝛼‖𝐿2→𝐿∞
6 𝐶1𝛼

−3/2 +𝑂
(︁
𝛼

5
2−2𝛽

)︁
(31)

где 𝐶1 = (1 − 𝛽)−1(Γ(1 − 𝛽))−161/2, 𝐶2 = (1 − 𝛽)−1(Γ(1 − 𝛽))−1(3 − 2𝛽)−1

Замечание 1.2. Недостаток оценки (31) — «разбаланс» в показателях степе-

ней 𝛼 слева и справа. При этом чем больше 𝛽, тем ближе показатель степени

у 𝛼 слева к показателю справа.

Теорема 2.12. Если 𝛽 - любое из интервала (0, 1), то для сходимости ∆ (𝛿, 𝑅𝛼, 𝑢) →

0 при 𝛼 → 0, 𝛿 → 0 необходимо согласование 𝛼 = 𝛼(𝛿), удовлетворяющее

условиям

1. 𝛼(𝛿) → 0;

2. 𝛿(𝛼(𝛿))−(1/2+𝛽) → 0 при 𝛿 → 0, и достаточно выполнения условия (1) и

условия 𝛿(𝛼(𝛿))−3/2 → 0 при 𝛿 → 0.

Теорема 2.13. В случае 𝛽 = 1/2 для норм операторов 𝑅𝛼 выполняется

следующая оценка

𝐶2𝛼
−1 6 ‖𝑅𝛼‖𝐿2−→𝐿∞

6 𝐶2𝛼
−1 +𝑂(𝑎2), (32)

где 𝐶2 = (2/𝜋)1/2, 𝐶1 = 𝐶2(2 ln 6)1/2.

Теорема 2.14. Если 𝛽 = 1/2 то для сходимости ∆ (𝛿, 𝑅𝛼, 𝑢) → 0 при 𝛼 →

0, 𝛿 → 0 необходимо и достаточно

1. 𝛼(𝛿) → 0;

2. 𝛿(𝛼(𝛿))−(1) → 0 при 𝛿 → 0,

Заключение. В данной дипломной работе с помощью разрывного опера-

тора Стеклова получено приближённое решение уравнения Абеля. Сделаны

выводы о выборе параметра регуляризации обеспечивающим сходимость при-

ближённого решения к точному.
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