
МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение

высшего образования

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ

ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н.Г.ЧЕРНЫШЕВСКОГО»

Кафедра Математического и компьютерного моделирования

Применение ООП аллокатора для дерева Жане

АВТОРЕФЕРАТ БАКАЛАВРСКОЙ РАБОТЫ

студента 4 курса 411 группы

направление 01.03.02 — Прикладная математика и информатика

механико-математического факультета

Тураева Артема Фирузовича

Научный руководитель

зав. каф., д.ф.-м.н., доцент Ю.А. Блинков

Зав. кафедрой

зав. каф., д.ф.-м.н., доцент Ю.А. Блинков

Саратов 2020

Введение. На практике часто возникает необходимость решать системы

нелинейных алгебраических уравнений с целочисленными коэффициентами.

Часто решение разбивается на два этапа: на первом этапе система приво-

дится к некоторому стандартному виду, называемому базисом Гребнера, на

втором этапе решается система, полученная на первом этапе. Теоретическая

сложность алгоритма пополнения исходной системы до базиса Гребнера, с

использованием алгоритма Бухбергера, достаточно высока.

Значительный интерес вызывает альтернативный алгоритм вычисления

нередуцированного стандартного базиса, получивший название инволютив-

ного. Инволютивный алгоритм вычисления стандартного базиса пришел в

коммутативную алгебру из дифференциальной алгебры и получил большой

успех. Полученный инволютивный базис может быть использован при реше-

нии систем нелинейных алгебраических уравнений и для их исследования

аналогично авторедуцированному базису Гребнера. Основное отличие инво-

лютивного алгоритма вычисления стандартного базиса от алгоритма Бухбер-

гера состоит в модифицированном алгоритме вычисления нормальной фор-

мы, который ограничивает набор возможных редукций.

Целью работы является построение алгоритмов, необходимых для вычис-

ления и построения дерева Жане, которое в дальнейшем может быть приме-

нено для пополнение систем нелинейных уравнений до базиса Гребнера.

Структура бакалаврской работы. Данная работа включает 7 разде-

лов:

1) Первый раздел посвящен описанию языка C++, разобраны его высо-

коуровневые возможности, тем самым была показана, эффективность

данного языка при решении поставленной задачи.

2) Во втором разделе представлено взаимодействие языка с внутренни-

ми компонентами ЭВМ. Было показано, как происходит использование

оперативной памяти во время работы программ, написанных на C++.

3) В третьем разделе изучается устройство аллокатора памяти, для более

эффективной её организации.

4) В четвёртом разделе изучается средство для сборки и тестировании

проектов, написанных на C++.

2

5) Пятый раздел вводит основные определения, необходимые для понима-

ния базиса Грёбнера. Также производится построение базиса Грёбнера

для системы уравнений с использованием алгоритма Бухбергера.

6) Шестой раздел вводит такое понятие, как инволютивное деление, кото-

рое является ключевым фактором при построении дерева Жане.

7) В седьмом разделе приводятся определения и алгоритмы, которые нуж-

ны для построения дерева Жане и в итоге был получен алгоритм для

построения минимального базиса Жане 2.

Основное содержание работы.

Язык C++ — это универсальный высокоуровневый объектно-

ориентированный язык программирования. ООП включает в себя такие по-

нятия, как инкапсуляция, наследование, инкапсуляция и полиморфизм.

Формальное определение ООП.

Объектно-ориентированное программирование - это метод реализации,

при котором программы организованы, как объединённые коллекции объ-

ектов, каждый из которых представляет собой экземпляр некоторого класса,

и все классы являются членами объединённой иерархии посредством отно-

шения наследования.

Определения базовых принципов:

Инкапсуляция — механизм языка, позволяющий объединить данные и

методы, работающие с этими данными в единый объект, и скрыть детали

реализации от других компонент программы.

Наследование в языке появилось в связи с необходимостью переисполь-

зовать и расширить базовый функционал класса предка в дочернем классе.

Также этот принцип способствует чистому написанию коду в соответствии с

DRY (don’t repeat yourself).

Полиморфизм вытекает из наследования, по сути это переопределение

базовой функциональности (методов или операторов) родительского класса

в классе потомке.

Полезные библиотеки в языке C++:

1) <cassert> - стандартная библиотека, позволяющая производить стати-

ческую отладку программы, путём внутреннего контроля допустимых

значений при помощи функции assert.

3

2) <cstddef> - библиотека, содержащая в себе тип данных size_t, который

используется для хранения размера объектов любых типов.

3) <cstdlib> - стандартная библиотека, которая содержит в себе функции

динамического управления памятью.

Низкоуровневое управление памятью. Указатели — это переменные, в ко-

торых хранится адрес области оперативной памяти в шестнадцатеричном

формате (обозначаются префиксом *). Ссылки — это тип переменной, ко-

торый работает как псевдоним другого объекта или значения (обозначаются

префиксом &).

Для управления памятью в языке C и C++ используются специальные

функции: malloc выделяет ячейку памяти, а функция free её освобождает,

оператор new выделяет ячейку, а оператор delete освобождает память. Функ-

ция realloc(pointer, size) — выделяет дополнительный участок памяти для

хранения объектов.

Организация памяти в программах на языке C++.

Память, которую используют программы, состоит из нескольких частей

(сегментов):

1) Сегмент кода (текстовый сегмент), в нём находиться скомпилированная

программа.

2) Сегмент bss (неинициализированный сегмент данных), где хра-

нятся глобальные и статические переменные, инициализированные

(𝑛𝑢𝑙𝑙/𝑛𝑢𝑙𝑙𝑝𝑡𝑟) нулём.

3) Сегмент данных (сегмент инициализированных данных), в нём хранят-

ся инициализированные глобальные и статические переменные.

4) Куча, откуда выделяются динамические переменные.

5) Стек вызовов, где хранятся параметры функции, локальные перемен-

ные и другая информация, связанная с функциями.

Стек (stack) — это область оперативной памяти (стековый фрейм), кото-

рая создаётся для каждого потока выполняемой программы

Куча (heap) — это хранилище памяти, также расположенное в оператив-

ной памяти компьютера. В отличие от стека, объекты помещённые в кучу

хранятся на протяжении выполнения всей программы и могут быть очище-

ны принудительно, используя специальные команды.

4

Устройство аллокатора.

Аллокатор в языке C++ - это распределитель памяти представленый в

виде специализированного класса, который реализует и инкапсулирует дета-

ли распределения и освобождения ресурсов компьютерной памяти.

Инструмент CMake

CMake — это кросс-платформенный инструмент (с открытым исходным

кодом) для определения и управления сборками кода, прежде всего напи-

санных на языке C++. Основная идея данного программного обеспечения

состоит в том, чтобы иметь единое определение того, как строится проект, -

который переводится в конкретные определения построения для любой под-

держиваемой платформы.

Также в работе рассматривается установка и настройка конфигурацион-

ного файла для Linux OS и осуществляется сборка проекта при помощи ко-

манд в bash консоли.

Базис Грёбнера и алгоритм Бухбергера.

Введём понятие кольца и идеала:

Пусть 𝐾[𝑥1, . . . , 𝑥𝑛] — множество всех многочленов от переменных

𝑥1, . . . , 𝑥𝑛 с коэффициентами в поле 𝐾 (над полем 𝐾). Если на этом мно-

жестве определены операции сложения и умножения, то такое множество

называют кольцом.

Непустое подмножество 𝐼 кольца 𝐾 (I ⊂ K) называется идеалом в 𝐾

(𝐼 ▷ 𝐾), если

- ∀𝑎, 𝑏 ∈ 𝐼, выполняется (𝑎+ 𝑏) ∈ 𝐼.

- ∀𝑎 ∈ 𝐼, 𝑐 ∈ 𝐾, элемент 𝑎𝑐 ∈ 𝐼.

Базис Грёбнера. Для допустимого упорядочивания ≺ конечное множество

𝐺 ⊂ 𝑅 называется базисом Грёбнера идеала 𝐼 ▷ 𝑅, если

(∀𝑓 ∈ 𝐼)(∃𝑔 ∈ 𝐺) [𝑙𝑚(𝑔)|𝑙𝑚(𝑓)].

Базис Грёбнера может быть построен с помощью алгоритма Бухбергера.

Ключевым понятием в данном алгоритме является редукция полиномов и

построение 𝑆-полиномов.

5

𝑆-полиномом для 𝑓, 𝑔 ∈ 𝑅 называется комбинация

𝑆𝑝𝑜𝑙𝑦(𝑓, 𝑔) =
𝑙𝑐𝑚(𝑙𝑚(𝑓), 𝑙𝑚(𝑔))

𝑙𝑡(𝑓)
𝑓 − 𝑙𝑐𝑚(𝑙𝑚(𝑓), 𝑙𝑚(𝑔))

𝑙𝑡(𝑔)
𝑔. (1)

Следующий алгоритм(алгоритм Бухбергера) 1 строит базис Грёбнера.

Algorithm 1 𝐺𝑟𝑜𝑒𝑏𝑛𝑒𝑟𝐵𝑎𝑠𝑖𝑠(𝐹)

Вход: 𝐹 ⊂ 𝑅 Выход: 𝐺 ⊂ 𝑅, такое что (𝐺) = (𝐹)

1: 𝐺 := ∅
2: while 𝐹 ̸= ∅ do
3: 𝐺 := 𝐴𝑢𝑡𝑜𝑅𝑒𝑑𝑢𝑐𝑒(𝐺 ∪ 𝐹)
4: 𝐹 := ∅
5: 𝑀 := {(𝑓, 𝑔) | (𝑓, 𝑔 ∈ 𝐺)(𝑓 ̸= 𝑔)}
6: for all (𝑓, 𝑔) ∈ 𝑀 do

7: ℎ := 𝑁𝑜𝑟𝑚𝑎𝑙𝐹𝑜𝑟𝑚(𝑆𝑝𝑜𝑙𝑦(𝑓, 𝑔), 𝐺)
8: if ℎ ̸= 0 then
9: 𝐹 := 𝐹 ∪ {ℎ}

10: end if

11: end for

12: end while

13: return 𝐺

На основе этого алгоритма был рассмотрен пример пополнения системы

нелинейных уравнений до базиса Грёбнера.

Инволютивное деление.

Ключевым понятием в алгоритме, созданном Бухбергером, является 𝑆-

полином. Если некоторым самосогласованным способом запретить деление по

некоторым переменным, называемыми немультипликативными, и разрешить

по другим, называемыми мультипликативными, то построить 𝑆-полином

можно используя немультипликативные продолжения одного многочлена и

его редукцию по другому с использованием мультипликативных переменных.

Будем говорить, что 𝐿-инволютивное деление определено на множестве

𝑀 , если ∀ конечного множества 𝑈 ⊂ 𝑀 и ∀𝑢 ∈ 𝑈 задан подмоноид 𝐿(𝑢, 𝑈)

моноида 𝑀 , удовлетворяющий следующим свойствам:

- ∀𝑢 ∈ 𝐿(𝑢, 𝑈) ∧ 𝑣 | 𝑢 ⇒ 𝑣 ∈ 𝐿(𝑢, 𝑈),

- ∀𝑢, 𝑣 ∈ 𝑈 ∧ 𝑢𝐿(𝑢, 𝑈) ∩ 𝑣𝐿(𝑣, 𝑈) ̸= ∅ ⇒ 𝑢 ∈ 𝑣𝐿(𝑣, 𝑈) ∨ 𝑣 ∈ 𝑢𝐿(𝑢, 𝑈),

- ∀𝑣 ∈ 𝑈 ∧ 𝑣 ∈ 𝑢𝐿(𝑢, 𝑈) ⇒ 𝐿(𝑣, 𝑈) ⊆ 𝐿(𝑢, 𝑈)

6

- ∀𝑢 ∈ 𝑉 ∧ 𝑉 ⊆ 𝑈 ⇒ 𝐿(𝑢, 𝑈) ⊆ 𝐿(𝑢, 𝑉)

Элементы 𝐿(𝑢, 𝑈)(𝑢 ∈ 𝑈) называются мультипликативными для 𝑢. Если

𝑤 ∈ 𝑢𝐿(𝑢, 𝑈), то 𝑢 называется 𝐿-инволютивным делителем 𝑤 и обозначается

𝑢|𝐿𝑤. В свою очередь, моном 𝑤 называется 𝐿-кратным 𝑢.

Быстрый поиск делителя с помощью дерева Жане.

Для инволютивного авторедуцированного множества может существо-

вать только один инволютивный делитель. В этом случае возможно постро-

ить деревья поиска с различной сбалансированностью, которые ускоряют по-

иск инволютивного делителя. Одним из таких деревьев является древоЖане.

Разбиение Жане. Конечное множество 𝑈 разделим на подмножества, мар-

кируемые числами 𝑑0, 𝑑1, . . . , 𝑑𝑖 ∈ Z≥0:

[𝑑0, 𝑑1, . . . , 𝑑𝑖] = {𝑢 ∈ 𝑈 | 𝑑0 = 0, 𝑑1 = 𝑑𝑒𝑔1(𝑢), . . . , 𝑑𝑖 = 𝑑𝑒𝑔𝑖(𝑢)}.

Независимая переменная 𝑥𝑖 считается мультипликативной для 𝑢 ∈ 𝑈 , если

𝑢 ∈ [𝑑0, 𝑑1, . . . , 𝑑𝑖] и

𝑑𝑒𝑔𝑖(𝑢) = 𝑚𝑎𝑥{𝑑𝑒𝑔𝑖(𝑣) | 𝑣 ∈ [𝑑0, 𝑑1, . . . , 𝑑𝑖]}

и немультипликативной в противном случае.

Поиск делителя Жане осуществляется на упорядоченных полиномах,

имеющих лексикографический порядок.

Рассмотрим структуру дерева Жане общего вида как множество

𝐽𝑇 := ∪{𝜈} внутренних узлов и листьев непустого множества мономов. К

каждому элементу 𝜈 дерева назначим пять элементов 𝜈 = [𝑑, 𝑢, 𝑛𝑑, 𝑛𝑣] со

следующей структурой:

- 𝑑𝑒𝑔(𝜈) = 𝑑 степень текущей переменной,

- 𝑚𝑜𝑛(𝜈) = 𝑢 указатель на моном,

- 𝑛𝑑𝑔(𝜈) = 𝑛𝑑 указатель на следующий узел по степени,

- 𝑛𝑣𝑟(𝜈) = 𝑛𝑣 указатель на следующий узел по переменной.

При отсутствии поддерева назначим значение 𝑛𝑖𝑙 соответствующему указате-

лю. Везде, где это не приводит к недоразумению, отождествим указатели 𝑛𝑑

и 𝑛𝑣 с узлами, на которые они указывают, а 𝑢 с мономом. Корень 𝑟𝑜𝑜𝑡(𝐽𝑇)

дерева 𝐽𝑇 имеет номер текущей переменной 1 и 𝑑𝑒𝑔(𝑟𝑜𝑜𝑡(𝐽𝑇)) = 0. При

7

дальнейшем обходе дерева номер текущей переменной при движении напра-

во увеличивается на 1.

Внутренние узлы и листья дерева 𝐽𝑇 характеризуются следующими со-

стояниями:

- Внутренний узел: (𝑛𝑣 ̸= 𝑛𝑖𝑙 ∨ (𝑛𝑑 ̸= 𝑛𝑖𝑙 ∧ 𝑑 < 𝑑𝑒𝑔(𝑛𝑑))) ∧ 𝑢 = 𝑛𝑖𝑙

- Лист: 𝑛𝑣 = 𝑛𝑖𝑙 ∧ 𝑛𝑑 = 𝑛𝑖𝑙 ∧ 𝑢 ̸= 𝑛𝑖𝑙

Дополнительно для листа дерева, при номере текущей переменной 𝑣 и

числе переменных 𝑛, выполнено

𝑑 = 𝑑𝑒𝑔𝑣(𝑢) ∧ (𝑣 = 𝑛 ∨
𝑛∑︁

𝑖=𝑣+1

𝑑𝑒𝑔𝑖(𝑢) = 0). (2)

По определению делитель Жане 𝑢 ∈ 𝑈 монома 𝑤 должен быть лек-

сикографически самым старшим среди всех мономов в 𝑈 или среди моно-

мов в группе 𝑑1 = 𝑑𝑒𝑔1(𝑤), . . . , 𝑑𝑖 = 𝑑𝑒𝑔𝑖(𝑤) для 1 ≤ 𝑖 < 𝑛. Следовательно

𝑑𝑒𝑔𝑗(𝑤) ≥ 𝑑𝑒𝑔𝑗(𝑢) при 𝑗 > 𝑖. После завершения цикла while на линии 3 воз-

можны три ситуации:

- (𝑛𝑑𝑔(𝜈) = 𝑛𝑖𝑙)∧(𝑛𝑣𝑟(𝜈) ̸= 𝑛𝑖𝑙). В этом случае нужно продолжить поиск

делителя по следующей переменной. Переход на нее сделан в строке 6.

- 𝑛𝑑𝑔(𝜈) ̸= 𝑛𝑖𝑙. Выполнение этого условия означает отсутствия делителя

Жане. Действительно, переход в строке 8 закончился бы листом с мо-

номом, который имеет более высокую степень в текущей переменной,

чем 𝑤. Такой моном не может делить 𝑤 в обычном и инволютивном

смысле.

- (𝑛𝑑𝑔(𝜈) = 𝑛𝑖𝑙) ∧ (𝑛𝑣𝑟(𝜈) = 𝑛𝑖𝑙). Это означает, что 𝜈 - лист дерева и его

моном является искомым делителем Жане.

Вставка монома в дерево Жане осуществляется посредством рекурсив-

ных вызовов, аналогичных рекурсивному определению структур данных.

Созданное поддерево имеет корень 𝑤 и заканчивается листом с мономом

𝑤
𝑛∏︀
𝑗=𝑖

𝑥
𝑑𝑒𝑔𝑗(𝑢)−𝑑𝑒𝑔𝑗(𝑤)
𝑖 = 𝑢. В случае когда переменная 𝑥𝑖 является немультипли-

кативной для всех мономов в этом поддереве, используется алгоритм продле-

ния переменной, который применяется к поддереву Жане.

8

В итоге алгоритм вставки монома в деревоЖане кроме построения новых

поддеревьев для вставки 𝑢, вычисляет все немультипликативные продолже-

ния, вызванные этой вставкой. Также вычисляются немультипликативные

продолжения монома 𝑢 относительно мономов содержащихся в листьях де-

рева Жане.

Алгоритм построения мономиального базиса.

Чтобы построить минимальный базис Жане идеала (𝑈) для конечного

непустого множества мономов 𝑈 , необходимо воспользоваться следующим

алгоритмом, который включает в себя все предыдущие алгоритмы инволю-

тивного деления и вставки монома в дерево.

Algorithm 2 𝑀𝑜𝑛𝑜𝑚𝑖𝑎𝑙𝐵𝑎𝑠𝑖𝑠(𝑈, 𝐽𝑇)
Вход: 𝑈 — конечное множество мономов; 𝐽𝑇 — дерево Жане
Выход: ̃︀𝑈 минимальный базис Жане идеала (𝑈)

1: 𝑉 := 𝑈
2:

̃︀𝑈 := ∅
3: while 𝑉 ̸= ∅ do
4: Выбрать: 𝑢 ∈ 𝑉 ∧ (@𝑤 ∈ 𝑉 𝑢)(𝑤 < 𝑢)
5: 𝑉 := 𝑉 {𝑢}
6: if 𝑑𝑖𝑣𝑖𝑠𝑜𝑟(𝐽𝑇, 𝑢) = 𝑛𝑖𝑙 then

7:
̃︀𝑈 := ̃︀𝑈 ∪ {𝑢}

8: 𝐽 − 𝑖𝑛𝑠𝑒𝑟𝑡(𝐽𝑇, 𝑢, 𝑉)
9: end if

10: end while

11: return ̃︀𝑈
Заключение. В бакалаврской работе были получены алгоритмы, кото-

рые необходимы при построении базиса Грёбнера: алгоритм Бухбергера и по-

строение дерева Жане. ООП аллокатор позволяет оптимизировать внутрен-

нюю работу программы с оперативной памятью компьютера. Также в работе

представлен пример построения базиса Грёбнера для системы нелинейных

алгебраических уравнений, используя 𝑆-полиномы, которые являются клю-

чевой особенностью алгоритма Бухбергера.

9

