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ВВЕДЕНИЕ

С каждым годом растет потребность в изучении больших данных как

для компаний, так и для активных энтузиастов. В таких крупных компани-

ях, как Яндекс или Google, всё чаще используются такие инструменты для

изучения данных, как язык программирования R, или библиотеки для Python.

Согласно Закону Мура, количество транзисторов на интегральной схеме удваи-

вается каждые 24 месяца. Это значит, что с каждым годом производительность

компьютеров растет, а значит и ранее недоступные границы познания снова

«смещаются вправо» — открывается простор для изучения больших данных, с

чем и связано в первую очередь создание «науки о больших данных», изуче-

ние которых в основном стало возможным благодаря применению алгоритмов

машинного обучения.

Машинное обучение — класс методов искусственного интеллекта, ха-

рактерной чертой которых является не прямое решение задачи, а обучение в

процессе применения решений множества сходных задач.

Целями выполнения магистерской работы являются изучение методов

аппроксимации в задачах построения регрессии и применение полученных

знаний на практике, а также закрепление, углубление и расширение знаний о

регрессионном анализе.

Для достижения поставленных целей были выделены следующие задачи:

— Изучение парной и множественной линейной регрессии.

— Определение трудностей, которые возникают при анализе, обусловлен-

ных особенностями изучаемых наборов данных.

— Выявление способов преодоления обнаруженных трудностей.

— Изучение регуляризации, как способа преодоления мультиколлинеарно-

сти и метода понижения размерности выборки.

— Изучение Ridge и Lasso регрессий.

— Рассмотрение Ridge и Lasso регрессии для построения инвестиционного

портфеля.

Термин «регресс» придумал Фрэнсис Гальтон в XIX веке, чтобы описать

биологическое явление. Суть была в том, что рост потомков от роста пред-

ков, как правило, регрессирует вниз к нормальному среднему. Для Гальтона
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регрессия имела только этот биологический смысл, но позже его работа бы-

ла продолжена Удни Йолей и Карлом Пирсоном и выведена к более общему

статистическому контексту.

В эконометрике широко используются методы статистики. Во многих

практических задачах прогнозирования, изучая различного рода связи в эко-

номических, производственных системах, необходимо на основании экспери-

ментальных данных выразить зависимую переменную в виде некоторой ма-

тематической функции от независимых переменных - регрессоров, то есть

построить регрессионную модель.

Работа состоит из 4 глав:

— В первой главе "Линейная регрессия"вводятся понятия парной и множе-

ственной линейной регрессии, приводятся методы оценки значимости

коэффициентов регрессионной модели и качества модели в целом.

— В главе "Нарушение некоторых предпосылок метода наименьших квад-

ратов"приводятся проблемы, с которыми исследователи часто сталкива-

ются при анализе данных, способы их преодоления. Дается толкование

понятия регуляризации, описывается Ridge и Lasso регрессии.

— В третьей главе, которая называется "Язык программирования R"описывается

история развития языка R, а также приводятся основные функции, кото-

рые позволят реализовать Ridge и Lasso регрессию в R.

— Четвертая глава - "Использование Lasso и Ridge регрессии в портфельном

инвестировании носит практический характер. В ней дается постановки

исследуемой задачи и реализуются Lasso и Ridge регрессии на языке R.

Работа прошла апробацию на различных конференциях, в частности,

в XIX Международной Саратовской зимней школе «Современные проблемы

теории функций и их приложения», посвященной 90-летию со дня рожде-

ния академика П. Л. Ульянова, январь 2018 года на ежегодной студенческой

конференции "Актуальные проблемы математики и механики которую про-

водил механико-математический факультет СГУ в апреле 2019 года, в сек-

ции "Анализ данных в VII Международной молодежной научно-практической

конференции «Математическое и компьютерное моделирование в экономике,

страховании и управлении рисками», ноябрь 2018 года.
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1 Линейная регрессия

Существует много задач, требующих изучения отношения между двумя

и более переменными. Для решения таких задач используется регрессионный

анализ. В настоящее время регрессия получила широкое применение, включая

задачи прогнозирования и управления. Целью регрессионного анализа явля-

ется определение зависимости между исходной переменной и множеством

внешних факторов (регрессоров).

1.1 Парная линейная регрессия

Название данного вида регрессии говорит само за себя. Это подход для

прогнозирования количественного значения переменной Y на основе одной

объясняющей переменной X . Он предполагает, что отношение между X и Y

близко к линейному. Математически можно записать это отношение в следу-

ющем виде:

Y ≈ β0 + β1X. (1.1)

Данное уравнение можно описать как регрессия Y от X [1]. В уравнении

1.1 β0 и β1 – две неизвестные константы, которые называют коэффициентами

или параметрами модели. На основе обучающих данных (набора значенийX и

соответствующих им значений Y ) необходимо найти оценки этих параметров.

Подставив эти оценки в уравнение регрессии можно прогнозировать значения

Y при определенных значениях X

ŷ ≈ β̂0 + β̂1x, (1.2)

где ŷ прогнозируемое значение Y при X = x. Здесь знак циркуфлекс («крыш-

ка») используется для обозначения оценочного значения неизвестного пара-

метра или прогнозного значения переменной.

1.2 Множественная линейная регрессия

Парная линейная регрессия – полезный подход для прогнозирования зна-

чений результирующего признака на основе одной объясняющей переменной.

Однако на практике, часто существует более одной объясняющей переменной.

Вместо того, чтобы строить отдельные парные регрессионные модели
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для каждого предиктора, лучше расширить простую линейную модель, чтобы

она могла непосредственно учитывать влияние нескольких объясняющих пе-

ременных. Следует каждому признак-фактору сопоставить свой коэффициент,

отражающий влияние данного признака на результирующую переменную. В

общем случае, предположим, что существует p отдельных объясняющих пе-

ременных. Тогда модель множественной регрессии принимает вид

Y = β0 + β1X1 + β2X2 + ...+ βpXp + ε, (1.3)

где Xj – j-я объясняющая переменная, βj – коэффициент, отражающий связь

j-ой переменной и результирующей переменной. Коэффициент βj отражает на

сколько измениться значение переменной Y при изменении переменной Xj на

единицу, при неизменных значениях остальных объясняющих переменных [2].
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2 Нарушение некоторых предпосылок метода наименьших

квадратов и их преодоление

Для получения методом наименьших квадратов наилучших результатов

необходимо, чтобы выполнялся ряд предпосылок относительно случайного

отклонения, которые носят название условий Гаусса-Маркова.

При построении классических линейных регрессионных моделей дела-

ются еще некоторые предположения. Например:

— объясняющие переменные не являются случайными величинами;

— число наблюдений существенно больше числа объясняющих перемен-

ных (числа параметров уравнения);

— отсутствуют ошибки спецификации, т. е. правильно выбран вид уравне-

ния и в него включены все необходимые переменные.

Часто полагают, что число наблюдений должно быть как минимум в 5-6

раз больше числа параметров уравнения (числа объясняющих переменных).

Более внимательно рассмотрим пятую предпосылку МНК, а также про-

блему снижения размерности.

2.1 Проблема мультиколлинеарности

Одним из основных условий построения уравнения множественной ре-

грессии является независимость факторов, включенных в модель, между со-

бой, т.е. соблюдение пятой предпосылки МНК.

Высокая взаимная коррелированность (взаимозависимость) объясняю-

щих (независимых) переменных называется мультиколлинеарностью. Она мо-

жет проявляться в функциональной (явной, полной) и стохастической (скры-

той) формах [3].

Оценки становятся очень чувствительными к незначительному измене-

нию результатов наблюдений и объема выборки. Уравнения регрессии в этом

случае, как правило, не имеют реального смысла, так как некоторые из его ко-

эффициентов могут иметь неправильные с точки зрения экономической теории

знаки и неоправданно большие значения.
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2.2 Уменьшение размерности

Под уменьшением размерности в машинном обучении подразумевает-

ся уменьшение числа признаков набора данных. Наличие в нем признаков

избыточных, неинформативных или слабо информативных может понизить

эффективность модели, а после такого преобразования она упрощается, и со-

ответственно уменьшается размер набора данных в памяти и ускоряется работа

алгоритмов.

Сокращение размерности может потребоваться когда данные избыточны

в информационном плане, т.е. задачу можно решить с тем же уровнем эф-

фективности и точности, но используя меньший объем данных. Это позволяет

урезать время и вычислительные затраты на решение задачи [4].

Другой случай связан со слишком большими вычислительными затра-

тами, требуемыми для обработки множества данного размера. Эта ситуация

типична для алгоритмов, вычислительная сложность которых экспоненциаль-

но растет с увеличением числа наблюдений (т.е. немасштабируемых). Если в

первом случае достаточно просто отобрать из всего множества столько при-

знаков (атрибутов) и записей, сколько надо, то во втором, нужно сократить

исходное множество до такого объема, который обеспечил бы реализуемость

его обработки, невзирая на потерю полезной информации.

2.3 Регуляризация

Регуляризация — метод добавления некоторой дополнительной инфор-

мации к условию с целью решить некорректно поставленную задачу. Эта ин-

формация часто имеет вид штрафа за сложность модели.

Методы регрессии Ridge и Lasso осуществляют регуляризацию пара-

метров и позволяют преодолеть некоторые недостатки метода наименьших

квадратов [5].

2.3.1 Ridge регрессия

Ridge регрессия очень похожа на метод наименьших квадратов, за ис-

ключением добавления «гребня».

n∑
i=1

(yi − β0 −
p∑
j=1

βjxij)
2 + λ

p∑
j=1

β2
j = RSS + λ

p∑
j=1

βpj , (2.1)
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где λ > 0 - дополнительный параметр, который определяется отдельно. Урав-

нение 2.1 определяет два разных критерия. Как и в случае с методом наи-

меньших квадратов, Ridge регрессия ищет оценки коэффициентов, которые

хорошо подходят для данных, минимизируя RSS. Однако второй член, назы-

ваемый штрафом за сокращение, тем меньше, чем ближе к нулю β1,... , βp,

поэтому он приводит к стремлению оценок βj к нулю.

В отличие от метода наименьших квадратов, который генерируют только

один набор оценок коэффициентов, Ridge регрессия будет производить новый

набор оценок коэффициентов для каждого значения λ [6].

Заметим, что в 2.1 штраф применяется к β1, ..., βp, но не к β0.

Таким образом, Ridge-оценка является МНК-оценкой с ограничением

нормы возможных решений (сферическое ограничение на параметры).

2.3.2 Lasso регрессия

У Ridge регрессии есть один недостаток. В отличие от лучшего под-

множества, прямого и обратного выбора, который обычно определяет модели,

которые включают только подмножество переменных, Ridge регрессия будет

включать все предикторы p в финальной модели. Штраф λ сжимает все ко-

эффициенты до нуля, но он не будет устанавливать ни одного из них точно в

ноль (кроме случая, когда λ = ∞). Это не уменьшит точность предсказания,

но это может создать проблему в интерпретации модели, в случае, когда число

переменных p достаточно велико.

В отличие от Ridge регрессии, Lasso регрессия имеет несколько другое

ограничение [7].

n∑
i=1

(yi − β0 −
p∑
j=1

βjxij)
2 + λ

p∑
j=1

‖βj‖ = RSS + λ

p∑
j=1

‖βj‖. (2.2)

Коэффициент λ умножается на l1-норму вектора (β1, β2, ...βp), тогда как

в Ridge регрессии используется l2-норма (рис. 2.1).

Положительным (в плане интерпретируемости модели) результатом та-

кой замены нормы является тот факт, что Lasso, в отличие от Ridge регрес-

сии, не только осуществляет регуляризацию, но и приравнивает некоторые из

коэффициентов к нулю при достаточно большом значении λ [8]. То есть до-
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Рисунок 2.1 – Ограничения на норму весов. Случай слева соответствует l1 норме, случай
справа — l2 норма

полнительно осуществляет выбор подмножества переменных, что позволяет

легче интерпретировать модель.

2.3.3 Выбор значения λ для Ridge и Lasso

Сначала вся выборка случайно разделяется на Q блоков. Один из блоков

рассматривается как контрольная выборка, а остальные Q− 1 в совокупности

составляют обучающую выборку. На практике Q обычно выбирают равным 5

или 10. Далее берется вектор λ = [λs] с некоторым шагом, и для каждого из

значений λs по обучающей выборке строится регрессионная модель. Для каж-

дой модели вычисляется ошибка прогноза, то есть сумма квадратов остатков

регрессии

RSSqλx =
n∑
i=1

(yi −
p−1∑
j=0

ˆ|betaj(q, λs)xij)2, (2.3)

где q = 1, Q - номер блока, выбранного в качестве контрольной выборки. Далее

вычисляется среднее значение этой ошибки по всем блокам:

MSEλs =
1

Q

Q∑
q=1

RSSqλs. (2.4)

В качестве подходящего λ выбирается такое λs, при котором MSEλs будет

минимальной [9].
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3 Использование Lasso и Ridge регрессии в портфельном

инвестировании

Портфельные инвестиции (portfolio investments) это вложение средств

в совокупность различных ценных бумаг с целью сохранения и извлечения

прибыли. Совокупность ценных бумаг составляет портфель. Именно инвести-

ционный портфель позволяет получить такие характеристики при комбинации

различных ценных бумаг, которые нельзя получить при инвестировании в от-

дельные финансовые инструменты.

3.1 Постановка задачи и исследуемые данные

Пусть задан набор 100 акций различных компаний, а также некий фон-

довый индекс. По каждой из акций есть данные о ее цене на момент закрытия

торгов за последние 2 месяца. Задача состоит, в том, чтобы составить инве-

стиционный портфель (т.е. выбрать веса активов) таким образом, чтобы общая

доходность портфеля была наиболее близка к доходности заданного индекса.

В качестве исходного набора возьмем 100 акций российских компаний,

которые наиболее активно торговались 1 апреля 2019 года. Данные взяты с

сайта https://finance.yahoo.com (Yahoo Finance). По каждой из акций возьмем

статистику по цене на момент закрытия торгов за период с 1 февраля 2019 года

по 29 марта 2019 включительно (40 рабочих дней). Как эталонный финансовый

индекс будем использовать индекс РТС.

Данные о значениях индекса РТС за исследуемый период были взяты

с сайта Московской Биржи https://www.moex.com. Все показания указаны в

рублях.

3.2 Реализация Lasso и Ridge регрессии в R

Для загрузки данных из файла будем использовать функцию read_excel

из пакета readxl. Из загруженных данных отбросим первый столбец, чтобы

убрать дату из рассмотрения.

Для того, чтобы воспользоваться функцией glmnet() подготовим дан-

ные, выделив в отдельную матрицу регрессоры и отдельно в вектор зависи-

мую переменную. В первую очередь реализуем функцию по сетке значений от

λ = 1010 до λ = 10−2.
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Следует отметить, что в нашей задаче, коэффициенты интерпретируются

как веса соответствующего актива в конечном финансовом портфеле, поэтому

следует добавить ограничение lower.limits.

> grid =10^ seq (10,-2, length =100)

> ridge.mod =glmnet (x,y,alpha =0, lambda =grid, lower.limits=rep(0,ncol(x)))

> lasso.mod =glmnet (x,y,alpha =1, lambda =grid, lower.limits=rep(0,ncol(x)))

Разделим данные на обучающий набор и тестовый. В качестве обучающей

выборки, возьмем 30 более ранних значения, а в качестве тестовой оставшиеся

более поздние данные (за 10 дней).

Далее используя кросс-валидацию найдем оптимальное значение λ для

Ridge регрессии на обучающем наборе данных и вычислим тестовую ошибку.

> ridge.out =cv.glmnet (x.train,y.train,alpha =0, lower.limits=rep(0,ncol(x)))

> bestlam =ridge.out$lambda.min

[1] 155.398

> ridge.pred=predict (ridge.mod ,s=bestlam ,newx=x.test)

> mean((ridge.pred -y.test)^2)

[1] 153.1889

> ridge.coef=predict (ridge.mod,type ="coefficients",s=bestlam )[1:101 ,]

Для Lasso регрессии проделаем ту же процедуру.

> lasso.out =cv.glmnet (x.train,y.train,alpha =1, lower.limits=rep(0,ncol(x)))

> bestlam =lasso.out$lambda.min

[1] 0.2361912

> lasso.pred=predict (lasso.mod ,s=bestlam ,newx=x.test)

> mean((lasso.pred -y.test)^2)

[1] 76.03104

> lasso.coef=predict (lasso.mod,type ="coefficients",s=bestlam )[1:101 ,]

Для Lasso регрессии мы получили меньшее значение средней ошибки, чем для

Ridge регрессии. В случае Lasso регрессии можно наблюдать, как и ожидалось,

что большое число коэффициентов получилось равно 0 (75 из 100, а в случае

Ridge регрессии только 42 из 100). Это облегчит процесс работы с портфелем, а

также интерпретируемость модели. Однако, значение λ получилось довольно

маленьким, что может говорить о том, что в моделе учитываются шумы и

различные побочные факторы.
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ЗАКЛЮЧЕНИЕ

В данной работе были изучены такие темы, как парная и множественная

линейна регрессия, проблема мультиколлинеарности и снижения размерности,

а также Ridge и Lasso регрессия. Ridge и Lasso регрессии были рассмотрены

на примере тестовых данных, для составления инвестиционного портфеля из

100 возможных активов, по статистическим данным за 40 рабочих дней.

Ridge регрессия – усовершенствование линейной регрессии с повышен-

ной устойчивостью к ошибкам, налагающая ограничения на коэффициенты

регрессии для получения куда более приближенного к реальности результата.

Вдобавок, этот результат гораздо проще интерпретировать. Применяется ме-

тод для борьбы с переизбыточностью данных, когда независимые переменные

коррелируют друг с другом (мультиколлинеарность).

Lasso регрессия сходна с Ridge, за исключением того, что коэффициенты

регрессии могут равняться нулю (часть признаков при этом исключается из

модели).

Оба метода успешно решают проблемы мультиколлинеарности, пере-

обучения, и уменьшают разброс коэффициентов. Ridge регрессия использует

все признаки, стараясь «выжать максимум» из всей имеющейся информации.

Lasso производит отбор признаков, что предпочтительнее, когда среди при-

знаков имеются шумовые, или измерения признаков связаны с ощутимыми

затратами. Полученные методом кросс-валидации значения λ, дают наилуч-

шие результаты при получении прогнозных значений модели.

В нашей задаче слежения за индексом, лучший результат дала регрессия

Lasso. В этом случае была не только получена наименьшая средняя оценка

отклонения, но и значительно сокращен размер портфеля, что делает работу

с ним более легкой и мобильной. Однако, Ridge регрессия также дала при-

емлемые результаты. К тому же, так как из-за особенности интерпретации

коэффициентов модели в нашей задаче, было наложено дополнительное огра-

ничение, некоторые из коэффициентов также получились равными нулю.

Решение о использовании той или иной модели следует принимать ин-

дивидуально в каждой решаемой задаче, исходя из особенностей области ис-

следования и исходных наборов данных. У каждой модели есть свои пре-
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имущества и недостатки. В общем случае, когда количество наблюдений в

несколько раз превосходит количество объясняющих переменных, метод наи-

меньших ошибок дает лучшие результаты, однако использование Lasso и Ridge

регрессии позволяет облегчить процесс интерпретации модели и избавиться от

лишних факторов, а также преодолеть некоторые особенности набора данных,

затрудняющие использование метода наименьших квадратов.
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