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ВВЕДЕНИЕ 

Темой выпускной квалификационной работы является модернизация 

теплообменного оборудования процесса гидрокрекинга тяжелых 

углеводородов. 

Актуальность темы обусловлена тем, что гидрокрекинг является важным 

процессом вторичной нефтепереработки, позволяющим производить с 

высокими выходами большой ассортимент продуктов: реактивное топливо, 

бензин, сжиженные газы С3-С4 и компоненты масел. 

Целью работы является модернизация установки гидрокрекинга за счет 

замены теплообменного оборудования. 

Каталитический гидрокрекинг нефтяного сырья – это каталитический 

процесс обработки нефтяных остатков и дистиллятов при повышенном 

давлении водорода и умеренной температуре на бифункциональных 

катализаторах, обладающих гидрирующей и кислотной активностью. 

Гидрокрекинг отличается от гидрообработки тем, что гидрообработка 

применяется для удаления серосодержащих соединений с минимальным 

разрывом углерод-углеродных связей,  тогда как гидрокрекинг основан на 

разрыве молекул более тяжелой нефти. 

Сырье гидрокрекинга – любое. Ассортимент продуктов определяется 

технологическими параметрами и составом катализатора. 

Технологические параметры и катализатор подбираются для каждого 

сырья отдельно. 

В настоящее время в нефтеперерабатывающей промышленности 

реализуется несколько направлений процесса гидрокрекинга: 

1. Гидрокрекинг бензиновой фракции с целью производства легких 

изопарафинов, являющихся сырьѐм для производства синтетического каучука и 

высокооктановой добавкой к автомобильным бензинам. 

2. Селективный гидрокрекинг бензинов с целью увеличения их октанового 

числа, а также реактивных и дизельных топлив с целью снижения их 

температуры застывания. 
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3. Гидродеароматизация прямогонных керосиновых фракций и газойлей 

каталитического крекинга с целью снижения содержания аренов. 

4. Легкий гидрокрекинг с целью облагораживания сырья каталитического 

крекинга, а также получения дизельной фракции. 

5. Гидрокрекинг вакуумных дистиллятов с целью получения основы масел 

с высоким индексом вязкости и моторных топлив. 

6. Гидрокрекинг тяжелых нефтяных остатков с целью получения сырья 

каталитического крекинга, малосернистого котельного топлива, смазочных 

масел и моторных топлив. 

Особенность химизма реакций гидрокрекинга связана с количеством 

(давлением) водорода в реакторе, а также свойствами и составом 

используемого катализатора. 
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ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ 

1 Химизм каталитического гидрокрекинга 

В процессе гидрокрекинга осуществляются преимущественно следующие 

реакции: 

1 Гидрогенолиз гетероорганических соединений:

 

2 Гидрирование ароматических углеводородов: 

 

 

3 Раскрытие нафтеновых колец: 

 

4 Деалкилирование циклических структур: 
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5 Расщепление парафинов и алкильных цепей:

 

Порядок, в котором происходят превращения, зависит от условий процесса 

(то есть кинетических и термодинамических закономерностей), активности 

применяемого катализатора, природы соединений, энергии разрушаемых 

химических связей и молекулярной массы веществ. 
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        2 Тепловой и материальный баланс 

       Материальный баланс установки гидрокрекинга при работе на основном 

сырье с конверсией 80%: 

Таблица 1 – материальный баланс установки 

Наименование сырья, продукции 

Количество 

тыс.т 

год 
кг/час % масс. 

Сырье:    

1. Тяжелый вакуумный газойль 2056,92 244872 97,2 

2. Подпиточный водород 60,10 7155 2,8 

Итого: 2117,03 252027 100 

    

Продукция:    

1. Дизельное топливо 638,61 76024,5 30,2 

2. Непревращенный остаток 375,39 44689,5 17,7 

3. Керосин 506,00 60238 23,9 

4. У/в газ (топливный) 70,97 8449 3,4 

5. Тяжелая нафта 321,46 38268,5 15,2 

6. Легкая нафта 120,34 14326,5 5,7 

7. СУ Г 26,56 3162 1,3 

8. Потери 57,70 6869 2,7 

Итого: 2117,03 252027 100 
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        Тепловой баланс теплообменника Т-122/1А-3: 

Таблица 2 – тепловой баланс 

Теплоносители 
Количество теплоты, кВт 

вход выход 

Нагреваемые:     

ВСГ 8,65 19,47 

ТВГ 3508,57 7894,27 

Греющие:     

Непревращенный 

остаток 1840,08 946,08 

Дизельная фракция 3244,52 1668,17 

Керосиновая фракция 1862 957,35 

Нестабильная нафта 2513,07 1292,1 

Потери:   199,45 

Итого: 12976,89 12976,89 

Тепловая мощность: Q = 4068555,7 ккал/ч = 4,73 МВт 

3 Расчет теплообменника 

Коэффициент теплоотдачи рассчитывается из выражения: 

α =
Nu ∙ λ

d
,

Вт

м2 ∙ °С
(1) , где 

λ – теплопроводность жидкости, 
Вт

м∙°С
 

d – диаметр трубопровода, м 

Nu – критерий Нуссельта 

Критерий Нуссельта для турбулентного режима движения в круглой трубе 

определяется по выражению: 

Nu = 0,021 ∙ Re0,8 ∙ Pr0,43(
Pr

Prст

)m (2) , где 
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Re – число Рейнольдса, определяющее режим движения жидкости в трубе 

(ламинарный или турбулентный). При Re<2800 режим движения ламинарный, 

при большем значении числа Рейнольдса режим движения считается 

турбулентным. 

Pr – критерий Прандтля, характеризует физические свойства 

теплоносителя в процессе теплообмена. 

Re =
W ∙ d

ν
, где 

W – скорость движения жидкости в трубе, м/с 

d – диаметр трубопровода, м 

ν – коэффициент кинематической вязкости жидкости, м2/с 

Pr =
ν

α
=
μ ∙ c

λ
, где 

𝜈 =
𝜇

𝜌
 - кинематическая вязкость жидкости 

μ – динамическая вязкость, Па∙с 

ρ – плотность жидкости, кг/м3 

λ– коэффициент теплопроводности, 
Вт

м∙°С
 

Число Рейнольдса для трубного пространства при W=1,3 м/с: 

Re =
W ∙ d

ν
= 11818 

Критерий Прандтля: 

𝑃𝑟 =
𝜈

𝛼
=

𝜈

𝜆 (𝑐 ∙ 𝜌) 
=
𝜈 ∙ 𝑐 ∙ 𝜌

𝜆
= 8 

Критерий Нуссельта: 
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𝑁𝑢 = 0,021 ∙ Re0,8 ∙ Pr0,43(
Pr

Prст

)m = 92,79 

Коэффициент теплоотдачи внутри трубки 𝛼1: 

𝛼1 =
𝑁𝑢 ∙ 𝜆

𝑑
= 811,9

ккал

м2 ∙ °С ∙ ч
= 944,2 

Вт

м2 ∙ °С
 

Число Рейнольдса для межтрубного пространства: 

𝑅𝑒 = 3105 

Критерий Нусссельта: 

𝑁𝑢 =  101,3 

Коэффициент теплоотдачи в межтрубном пространстве: 

𝛼2 =
𝑁𝑢 ∙ 𝜆

𝑑
= 759,7

ккал

м2 ∙ ч ∙ °С
= 883,5

Вт

м2 ∙ °С
 

Рассчитаем коэффициент теплопередачи в теплообменнике: 

𝐾 =
1

1

𝛼1
+

𝛿

𝜆
+

1

𝛼2

= 393,7 
ккал

м2 ∙ °С ∙ ч
= 457,8

Вт

м2 ∙ °С
 

𝐹 =
𝑄

𝐾 ∙ ∆𝑡
= 328 м2 

        4 Выбор материала для теплообменника 

Давление в трубном пространстве составляет 170 кг/см2, а в межтрубном 

140 кг/см2. Среда содержит сернистые соединения, температура стенки около 

400 °С. Принимаем для теплообменника хромоникелевую сталь 1Х18Н10Т с 

допускаемыми напряжениями 11,1 кгс/мм2. 

Так как коррозия стенки трубы из хромоникелевой стали очень мала, 

принимаем трубы бесшовные 14х1 мм ГОСТ 8734-75 

холоднодеформированные.  
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Трубы в теплообменнике размещаем в шахматном порядке с шагом 1,5d в 

треугольнике. 

         5 Повышение эффективности теплообменника 

Для повышения эффективности теплообменника выбираем наиболее 

простой способ интенсификации теплообмена – оребрение поверхности 

теплообмена продольными ребрами. Так как теплоотдача внутри трубы 

получилась больше, чем с наружной стороны, то оребряем наружную 

поверхность труб. 

 

 

Рисунок 7 – трубка с продольным оребрением наружной поверхности 

Коэффициент оребрения трубы: 

𝐾ор =
𝐹оребр

𝐹неоребр
= 1,82 

При коэффициенте эффективности 0,7 и загрязнении 0,9 получаем 

эффективную поверхность оребрения: 

𝐾𝑝𝑐 = 1,146 

Тогда коэффициент теплоотдачи: 
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𝛼2 = 870,6 
ккал

м2 ∙ ч ∙ °С
 

К = 465 
ккал

м2 ∙ ч ∙ °С
 

Поверхность нагрева теплообменника: 

𝐹 =
𝑄

𝐾 ∙ ∆𝑡
= 278 м2 

Таблица 3 – сравнение теплообменников 

Характеристика 
Установленный 

теплообменник 

Проектируемый 

теплообменник 

Дкожуха, мм  800 800 

dтруб, мм 14x1 14x1 

F, м
2
 328 278 

K, Вт/(м
2
  ∙ °С) 457.8 540.7 

L, м 13,54 6.32 

nтруб 551 551 

αтруб, ккал/(м
2
∙ч∙ °С) 811.9 811.9 

αмежтруб, ккал/(м
2
∙ч∙ °С) 759.7 870.6 

материал 1X18H10T 1X18H10T 

Pтруб, кг/см
2
 170 170 

Pмежтруб, кг/см
2
 140 140 

 

Как видно из таблицы 3, оребрение поверхности со стороны меньшего 

коэффициента теплоотдачи увеличивает коэффициент теплопередачина 18% и 

позволяет уменьшить площадь поверхности на 20%, при том же диаметре 

кожуха уменьшается длина теплообменника приблизительно на 7 метров. 
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ЗАКЛЮЧЕНИЕ 

        На основании проведенных расчетов можно сделать следующие выводы: 

       1. Разработан проект модернизации теплообменного оборудования 

установки гидрокрекинга. 

       2. Произведен расчет теплообменника с оребренными трубами. Основные 

параметры теплообменника: 

Диаметр кожуха D=800 мм 

Диаметр трубок d=14x1 мм 

Площадь нагрева F=278м2 

Коэффициент теплопередачи K=540,7Вт/(м
2
  ∙ °С) 

Длина L=6,32 м 

Материал – нержавеющая сталь 1X18H10T 

3. Показана целесообразность замены теплообменного оборудования. 

Коэффициент теплоотдачи для межтрубного пространства увеличивается на 

15%. 

 

 

 

 


