
Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ

ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ

ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н. Г. ЧЕРНЫШЕВСКОГО»

Кафедра математической

кибернетики и компьютерных наук

РАЗРАБОТКА WEB-ПРИЛОЖЕНИЯ ДЛЯ ОРГАНИЗАЦИИ И

ПЛАНИРОВАНИЯ ПОЛЬЗОВАТЕЛЬСКИХ ЗАДАЧ

АВТОРЕФЕРАТ БАКАЛАВРСКОЙ РАБОТЫ

Студентки 4 курса 451 группы

направления 09.03.04 — Программная инженерия

факультета КНиИТ

Удаловой Ольги Дмитриевны

Научный руководитель

доцент, к. ф.-м. н. И. А. Батраева

Заведующий кафедрой

к.ф.-м.н. С. В. Миронов

Саратов 2018

СОДЕРЖАНИЕ

ВВЕДЕНИЕ . 3

1 Краткое содержание работы . 4

1.1 Первый раздел работы . 4

1.2 Второй раздел работы . 4

1.3 Третий раздел работы . 7

ЗАКЛЮЧЕНИЕ . 11

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ . 12

ВВЕДЕНИЕ

В рамках данной работы разработан web-планировщик, позволяющий

отслеживать текущие дела пользователя, напоминать о необходимости выпол-

нения, а также обладающий функцией автоматического распределения задач в

соответствии с их приоритетами и сложностью.

Несмотря на то, что существует большое количество приложений для

планирования и организации задач, многие оказывается слишком дорогими и

громоздкими или не предоставляют возможность интеграции с уже существу-

ющими сервисами. Таким образом, разработка собственного органайзера, об-

ладающего удобным функционалом, являющегося компактным и максимально

гибким, остается актуальной.

В дальнейшем разработанное приложение будет использоваться как ком-

пактный, настраиваемый и бесплатный web-органайзер для управления зада-

чами в IT-компании. Планируется интеграция с внутренними сервисами аутен-

тификации, с почтой и системой выдачи рабочих задач. Для сотрудников, сов-

мещающих работу с обучением в ВУЗе будет особенно актуальна функция

автоматического распределения событий: она позволяет избежать ситуации

наложения друг на друга нескольких задач по работе/учебе, когда приходится

выбирать что-то одно, чтобы успеть в срок.

Таким образом, в рамках написания проекта для дипломной работы были

поставлены следующие задачи:

1. Изучить структуру и механизмы взаимодействия между клиентом и сер-

вером;

2. Рассмотреть наиболее популярные средства разработки и сделать выводы

об их целесообразности;

3. Используя изученные технологии, реализовать web-приложение для пла-

нирования и организации пользовательских задач.

Структура и объем работы. Бакалаврская работа состоит из введения, трех

разделов, заключения, списка использованных источников и одного прило-

жения. Общий объем работы — 51 страница, из них 44 страницы — основное

содержание, включая 18 рисунков, цифровой носитель в качестве приложения,

список использованных источников информации — 20 наименований.

3

1 Краткое содержание работы

1.1 Первый раздел работы

Раздел посвящен рассмотрению теоретических основ Web-технологий:

архитектуре «Клиент-сервер». Это тип сетевой архитектуры, в рамках кото-

рого вычислительные мощности и сетевая нагрузка распределены между сер-

верами — некими программными компонентами, выполняющими сервисные

функции — и клиентами, запрашивающими «услуги» сервера. И клиент, и сер-

вер являются программным обеспечением, причем чаще всего они находятся

на различных рабочих станциях и взаимодействуют друг с другом удаленно

посредством сетевых протоколов. Т.к. к серверу, как правило, обращается мно-

жество клиентов, он размещается на отдельной особым образом настроенной

станции с высоким уровнем производительности.

Приложение, реализующее клиент-серверную архитектуру, называют web-

приложением.

1.2 Второй раздел работы

Раздел посвящен рассмотрению типовой структуры Web-приложения, а

также обзору используемых при разработке технологий.

На рисунке 1 приведена общая схема работы Web-приложения.

Серверная часть приложения: уровень хранения данных. В этом под-

разделе описано схематичное устройство уровня хранения данных в web-

приложении, а также используемые технологии — СУБД PostgreSQL и фрейм-

ворк Hibernate.

Уровень хранения данных включает в себя DataSource (или источник

данных) и Persistence layer, где организован непосредственно доступ к данным.

Сразу стоит упомянуть такое понятие, как DAO — Data Access Object.

Это один из широко используемых шаблонов проектирования — объект, предо-

ставляющий доступ к источнику данных и покрывающий его дополнительным

слоем абстракции.

В Persistence layer определяется один или несколько интерфейсов, бла-

годаря которым вышестоящим Business Layer будет иметь доступ к данным.

Несмотря на обилие всевозможных DataSource, наиболее «классическим» ре-

шением является использование реляционных баз данных.

4

Рисунок 1 – Внутренняя архитектура Web-приложения

В рамках рассматриваемой ВКР в качестве системы управления базой

данных была выбрана PostgreSQL — бесплатная СУБД с открытым исходным

кодом

Также, для упрощения работы с базой данных использовался фреймворк

Hibernate. Hibernate реализует технологию ORM: она позволяют работать с за-

писями в таблице как с обычными Java-объектами: для этого классы-сущности

(классы, экземпляры которых представляют собой записи таблицы) помечают-

ся аннотациями Hibernate.

Серверная часть приложения: уровень бизнес-логики. В этом подразделе

описано схематичное устройство уровня бизнес-логики в web-приложении, а

также используемые технологии — язык программирования Java и фреймворк

Spring.

Основной задачей этого уровня является, по сути, обработка информа-

ции, полученной из Persistence Layer — добавляется определенная логика, в

соответствии с которой данные изменяются и обновляются. Главной задачей

разработчика на этом уровне является организация работы с данными в виде

5

цельных транзакций, а также разработка оптимальной иерархии сущностей.

Инициализация иерархии классов, как правило, производится с исполь-

зованием такого паттерна, как Inversion of Control («Инверсия контроля») или,

сокращенно, IoC. Основная его идея заключается в возложении задачи опре-

деления связей между классами и объектами на некий фреймворк. При раз-

работке серверной части приложения и уровя бизнес-логики в частности ис-

пользовался язык программирования Java и универсальный фреймворк Spring.

В качестве средства веб-разработки используется Java Enterprise Edition.

Она предоставляет набор интерфейсов API для разработки и запуска портиру-

емых, надежных, масштабируемых и безопасных серверных приложений [1].

Для упрощения разработки и реализации шаблона «Инверсия контро-

ля» использовался фреймворк Spring Boot. Это фреймворк, разработанный на

основе Spring Framework. Он, по сути, представляет из себя «обертку» над

Spring, состоящую из дополнительных конфигураций и технологий.

Web-уровень: взаимодействие клиента и сервера. В этом подразделе опи-

сано взаимодействие приложения и Web-клиента. В рамках ВКР при разра-

ботке использовалась технология веб-сокетов(WebSockets).

WebSockets — это относительно молодая технология по взаимодействию

клиента(браузера) и сервера в режиме реального времени. Взаимодействие

асинхронно: в отличие от классических HTTP-запросов веб-сокеты умеют ра-

ботать с двунаправленным потоком информации. Клиент может отправить од-

но сообщение и ожидать отклика. То есть клиент как бы «слушает» сервер,

которые отправляет сообщения по мере готовности.

Клиентская часть приложения. В этом подразделе описано устройство

клиентской части приложения, а также рассмотрены такие технологии как

язык программирования JavaScript, язык разметки HTML и таблицы стилей

CSS.

JavaScript — это мультипарадигменный язык программирования. Поддер-

живает объектно-ориентированный, императивный и функциональный стили.

Основная задача языка - это добавление интерактивности на страницы веб-

сайта. Скрипты подключаются к HTML-страницам и выполняются при за-

грузке — JS не требуется компилировать.

6

В контексте разработки клиентской части веб-приложения основной за-

дачей JavaScript является манипулирование элементами DOM-модели веб-

станицы [2]. В качестве инструмента для создания веб-страниц и их последу-

ющего отображения в браузере используется HTML — язык разметки гипер-

текста.

CSS — это язык описания внешнего вида документа разметки. В основ-

ном используется для оформления веб-страниц, для задания цветов, шрифтов,

расположения элементов на странице и т.п.

Основной целью CSS является отделение описания внешнего вида до-

кумента от описания его логической структуры [3]: это упрощает разработку,

повышает гибкость и дает возможность управлять структурой и представлени-

ем по отдельности. Также, это минимизирует объем кода и позволяет избегать

повторов.

1.3 Третий раздел работы

Раздел посвящен разработке собственного web-приложения на практике.

Описываемое приложение представляет из себя web-органайзер, отслеживаю-

щий задачи, напоминающий пользователю о необходимости их выполнения, а

также обладающей функцией автоматического распределения задач с плаваю-

щей датой в зависимости от уже заданных событий.

Структура разработанного приложения. Подраздел посвящен описанию

архитектуры разработанного приложения. Она разработана в соответствии с

описанной ранее типовой структурой:

— Уровень хранения и управления данными, где происходит вся работа с

информацией из источника.

— Уровень бизнес-логики — здесь реализована основная логика серверной

части приложения, а также обработка данных, полученных на предыду-

щем уровне.

— Веб-уровень — взаимодействие серверной и клиентской частей приложе-

ния.

— Интерфейс пользователя — клиентская часть приложения.

На рисунке 2 приведена диаграмма классов разработанного приложения.

7

Рисунок 2 – Диаграмма классов разработанного приложения

Работа с базой данных. Подраздел посвящен описанию механизму обра-

ботки исходных данных из базы PostgreSQL. В качестве средства по работе

с базой использовался фреймворк Hibernatе. Разработана структура базы дан-

ных, состоящая из двух таблиц: таблица events, содержащая всю информацию

о пользовательских событиях, а также таблица categories, в которой хранятся

все возможные категории вышеописанных событий. Таблицы связаны отно-

шением один-ко-многим: пользователь может определять множество событий

одной категории, но у одного события может быть только одна категория.

Рисунок 3 – Схема используемой в приложении базы данных

Средства Hibernate позволяют работать с записями в таблице как с обыч-

ными Java-объектами: для этого классы-сущности (классы, экземпляры кото-

рых представляют собой записи таблицы) помечаются аннотациями Hibernate.

Далее классы-сущности оборачиваются слоем обработки данных, или DAO-

слоем. Здесь находятся объекты, предоставляющие доступ к источнику данных

8

и покрывающие его дополнительным слоем абстракции. Вся работа непосред-

ственно с базой данных — создание сессий транзакций, выполнение запросов,

запись новых объектов реализуется только через DAO-объект.

Разработка бизнес-логики. В данном подразделе описывается бизнес-логика

приложения, взаимодействие классов и основные алгоритмы.

Поверх DAO-слоя из уровня хранения данных располагается сервис-

ный слой. Именно на уровне бизнес-логики реализован механизм автома-

тической расстановки событий с плавающей датой в зависимости от уже

прописанных в базе. Если пользователь включил эту функцию, то в методе

public void eventAutoCreation класса EventServiceImpl система выбира-

ет свободные дни и заполняет базу «предположениями» о том или ином собы-

тии. Пользователь может подтвердить предположение или удалить его.

Взаимодействие клиента и сервера. В данном подразделе описан механизм

работы веб-уровня.

Здесь находится класс-контроллер, который принимает запросы, прихо-

дящие от сервера, перенаправляет их на обработку в сервисные классы, и

отправляет ответы серверу.

После получения сообщения о, например, новом событии, управление

отдается классу EventService, который, в свою очередь, взаимодействуя с

EventDAO создает объект в базе. Далее контроллер должен создать сообщение

для отправки на клиент, в котором будет вся информация о созданном собы-

тии — сообщение, тело которого — JSON-объект, в котором содержится вся

информация о передаваемом событии.

Для задания структуры сообщения создан простой Java-класс с необхо-

димыми текстовыми полями в качестве параметров: EventMessage. Механизм

обмена сообщениями реализован средствами библиотеки spring-messaging.

Непосредственная «точка входа» в приложение — класс Main. Здесь за-

пускается приложение спринг бут и происходит настройка обмена сообщений

через WebSockets

На клиентской части для подключения WebSockets разработан скрипт

WebSockets.js: здесь открывается соединение, и после успешного подключения

клиент «подписывается» на /topic/events: на этот адрес сервер будет отсылать

9

сообщения с пользовательскими событиями.

Разработка клиентской части приложения. В данном подразделе описан

интерфейс пользователя разработанного приложения.

ри разработке клиентской части приложения использовался язык про-

граммирования JavaScript в сочетании с языком разметки HTML и таблицами

стилей CSS.

Основная часть интерфейса — календарь с отображенными на нем знач-

ками задач. Он условно разбит на три части: заголовок, в котором выводятся

текущие месяц и год, непосредственно календарь с днями недели и обозна-

чением сегодняшней даты и легенда по цветам — каждой категории событий

соответствует свой цвет.

Сначала создаются статические элементы — блок напоминаний в левой

части экрана и заготовка для календаря — блочный элемент с определенным

айди. После этого запускается скрипт, создающий объект Calendar, который в

качестве полей содержит список событий, html-элемент, где календарь будет

выводиться(блочный элемент calendar, заранее заданный в index.html) и ука-

затель на сегодняшний день. Для работы с датами использовалась библиотека

moment.js.

Развертывание приложения в контейнере сервлетов. В данном подраз-

деле описаны технологии, при помощи которых происходит развертывание

приложения в контейнере. Для этого использовался фреймворк Maven и кон-

тейнер сервлетов Tomcat.

Maven — фреймворк для автоматической сборки. Он создает конечный

файл проекта на основе его спецификации в конфигурационных файлах. Полу-

ченный в результате сборки файл развертывается на встроенном в Spring Boot

контейнере сервлетов Tomcat. Таким образом, в клиент-серверной модели в ро-

ли клиента выступает по-прежнему браузер, а сервер заменяет программное

обеспечение на той же машине — Apache Tomcat.

10

ЗАКЛЮЧЕНИЕ

В ходе работы были выполнены поставленные цели: подробно рассмот-

рена архитектура типичного web-приложения, сделан обзор используемых

фреймворков и библиотек, проведен их анализ. Реализована серверная часть

приложения с использованием вышеупомянутых технологий, организована ра-

бота с базой данных, а также клиент-серверное взаимодействие с использова-

нием технологии WebSockets.

11

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1 Эккель, Б. Философия Java / Б. Эккель. — Санкт-Петербург: Питер, 2017.

2 Флэнаган, Д. JavaScript: Подробное руководство. 6-е издание / Д. Флэна-

ган. — Москва: Символ, 2016.

3 Хеник, Б. HTML и CSS. Путь к совершенству. / Б. Хеник. — Санкт-

Петербург: Питер, 2011.

12

	ВВЕДЕНИЕ
	Краткое содержание работы
	Первый раздел работы
	Второй раздел работы
	Третий раздел работы

	ЗАКЛЮЧЕНИЕ
	СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

