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ВВЕДЕНИЕ 

В современной электродинамике СВЧ и интегральной оптике широко 

используются многослойные планарные структуры, отдельные слои которых 

выполнены из материалов различного типа – диэлектриков, тонких 

металлических пленок, ферритовых пленок, метаматериалов и материалов 

других типов. В качестве устройств, основанных на многослойных структурах 

можно назвать рефлекторы [1], поляризаторы[2], фильтры, ответвители, 

волноведущие системы. Для теоретического анализа таких структур наиболее 

часто используют различные варианты метода матриц передачи (ММП), 

которые отличаются высокой точностью, простотой и высокой скоростью 

работы.  

Однако, применение ММП к многослойным структурам ограничено 

двумя факторами. Во-первых, если отдельные слои выполнены из 

анизотропных материалов, алгоритмы метода существенно усложняются. 

Выражения для элементов матрицы передачи отдельного слоя теперь 

невозможно записать аналитически, поскольку в случае полностью 

заполненных тензоров диэлектрической и магнитной проницаемостей 

дисперсионное уравнение для волн в безграничной среде из такого материала 

представляет собой уравнение 4-ой степени. Это обстоятельство требует 

разработки новых алгоритмов для расчета свойств отдельного слоя, 

основанных на матричных подходах. 

Во-вторых, известно, что в ряде случаев ММП демонстрирует 

численную неустойчивость, природа которой связана с тем, что матрица 

передачи отдельного слоя, в котором возможно большое затухание или 

нарастание волн, становится близка к вырожденной матрице. Для преодоления 

этой трудности в 2000-х годах был предложен и развит новый метод анализа 

многослойных структур, получивший название метода точных конечных 

разностей. Однако до настоящего времени этот подход применялся только для 

многослойных структур из изотропных материалов. 
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Научная новизна состоит в том, что в данной работе разработан метод 

расчета матрицы передачи для анизотропной слоистой структуры, в которой 

компоненты тензоров   и   являются полнозаполненными. 

В связи с изложенным, целью выпускной квалификационной работы 

было развитие методов матриц передачи и точных конечных разностей 

применительно к анализу слоистых электродинамических структур, имеющих 

в пределах каждого слоя полностью заполненные и произвольные по 

значению тензоры диэлектрической и магнитной проницаемостей. 

Для достижения этой цели в работе были решены следующие задачи.  

Получены основные соотношения метода матриц передачи для 

слоистых структур из изотропных материалов, при этом все промежуточные 

вычисления сформулированы в матричном виде, обеспечивающим 

проведение вычислений без использования аналитических формул для 

компонент полей. Хотя метод применительно к изотропным системам ранее 

многократно развивался, эта часть работы носит важный методический 

характер, поскольку все основные шаги алгоритма без принципиальных 

изменений переносятся на случай анализа анизотропных структур. 

Разработана и отлажена программа расчета электродинамических 

параметров плоско - слоистых волноводов из изотропных 

магнитодиэлектриков. Правильность работы программы была проверена на 

значительном количестве тестовых примеров, что подтвердило правильность 

всего численного алгоритма в целом. 

Получены формулы для матрицы Берремана, описывающей 

пространственное изменение полей в пределах одного слоя из анизотропного 

материала в случае полностью заполненных тензоров ̂  и ̂ . Знание этой 

матрицы позволяет рассчитать матрицу передачи отдельного слоя. 

Сформулирован численный алгоритм получения дисперсионного 

уравнения, описывающего поверхностные (направляемые) моды в 

многослойной анизотропной структуре. Хотя в рамках настоящей работы 
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рассматривалась только задача об анализе направляемых мод, с помощью 

развитых подходов могут быть просто проанализированы задачи в другой 

постановке, например, задача о рассеянии и прохождении плоской волны 

произвольной поляризации, падающей на слоистую структуру. 

Разработана и отлажена программа расчета электродинамических 

параметров планарных слоистых волноводов, состоящих и слоев с 

произвольными полностью заполненными тензорами диэлектрической и 

магнитной проницаемостями. Корректность работы программы проверена на 

нескольких тестовых примерах, включающих слои из анизотропных 

материалов и метаматериалов. 

Разработан алгоритм метода точных конечных разностей 

применительно к слоистой структуре из анизотропных магнитодиэлектриков.  

Основное содержание работы 

Работа состоит из двух основных разделов.  

В первом разделе рассматривается теоретический метод получения и 

расчета матрицы передачи для многослойных структур. Также получен и 

представлен алгоритм расчета матрица передачи для изотропных структур, где 

волну можно разделить на ТМ и ТЕ – волны.

 

Рисунок 1 - Слоистый волновод. Нижний и верхний буферные слои являются 

полубесконечными, то есть бесконечны в направлении удаления от данной слоистой 

структуры 
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Рассматривалась задача падения плоской электромагнитной волны на границу 

раздела двух сред, имеющих различные значения тензоров относительных 

электрической и магнитной проницаемостей (см. рисунок 1). Из уравнений 

Максвелла [3] была получена система 4-х уравнений дифференциальных 

уравнений первого порядка для касательных к границам раздела компонент 

электромагнитного поля, которая в матричном виде выглядит следующим 

образом: 

 ˆ ,d
dz

   (1) 

где введены вектор столбец, составленный из компонент полей 
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Уравнения (1)-(2) описывают распространение волны в произвольном 

направлении в плоскости xy, задаваемом направлением волнового вектора 

( , )x yk k . Решение уравнения (1) в пределах отдельного слоя, границы которого 

задаются координатами iz  и 1iz
 позволяет получить матрицу передачи [4] для 

этого слоя, связывающую значения векторов 1ˆ ( )iz  и ˆ ( )iz  с помощью 

соотношения 1
ˆˆ ˆ( ) ( )i i iz T z   . Матрица ˆ

iT  имеет вид 

 
1 2 3 4 1ˆ ˆ ˆdiag[ , , , ]i i i id d d d

iT W e e e e W       ,  (3) 

где i  -собственные числа матрицы  , Ŵ - матрица, столбцы которой состав-

лены из собственных векторов матрицы  , 1i i id z z   - толщина слоя, 
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diag[...]   - диагональная матрица. С помощью перемножения всех матриц пе-

редачи для отдельных слоев, получали общую матрицу передачи для слоистой 

структуры. Знание матрицы передачи позволяет получить дисперсионное 

уравнение для направляемых мод слоистой структуры численно в виде требо-

вания равенства нулю выражения, в которое входят элементы полной матрицы 

передачи и параметры буферных слоев. Для случая изотропной среды волну 

можно разделить на пару TE  и TM   волн, что значительно упрощает под-

счеты, поскольку матрицы (2) и (3) имеют блочную структуру и состоят из 

матриц порядка 2 2  для каждого типа волн.  

Далее в первом разделе выпускной квалификационной работы 

рассмотрены примеры расчета направляемых мод в слоистых изотропных 

структурах, а именно, в плоской диэлектрической пластине, а также в 

пятислойной структуре, содержащей сердцевину из метаматериала. В обоих 

случаях полученные результаты полностью совпали с известными из 

литературы данными. 

Во втором разделе работы был развит метод расчета направляемых мод 

в открытой плоскослоистой анизотропной структуре, у которой в пределах 

каждого слоя тензоры диэлектрической и магнитной проницаемостей могут 

быть полностью заполненными. Поскольку в системе существует 

анизотропия, то в ней не могут распространяться в чистом виде TE - и TM - 

волны, собственные волны в ней носят гибридный характер, то есть отличны 

от нуля все 6 компонент электромагнитного поля. Кроме этого, дисперсия и 

распределения полей собственных волн будут зависеть от направления 

распространения волны в плоскости ( , )x y   

Аналогично процедуре, использованной в первом разделе выпускной 

работы, в случае полностью заполненных тензоров ̂  и ̂  уравнения для 

касательных к границам раздела слоев компонент полей могут быть 

представлены в виде в матричном виде: 
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ˆ
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   ,  (4) 

где ˆ , , ,
T

x y x yE F F E      - вектор – столбец, состоящий из поперечных компонент 
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1
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Матрица ̂  носит название матрицы Берремана [5]. Матрица передачи 

полностью анизотропного слоя может быть вычислена с помощью 

соотношения, аналогичного уравнению (3). Для направляемых мод в нижнем 

буферном слое выражения для компонент полей имеют вид 
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  (6) 

где ( ', ')x y  вспомогательная система координат, ось 'x  которой направлена 

вдоль направления распространения волны. Аналогичное выражение может 
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быть записано для компонент полей в верхнем буферном слое, с заменой ин-

декса d  на индекс u . Амплитуд нарастающих и затухающих при удалении от 

слоистой структуры волн связаны соотношением 

 ˆ[ , , , ] [ , , , ]T T
u u u u d d d dA B C D W A B C D  ,.  (7) 

где матрица Ŵ  выражается через полную матрицу передачи и параметры бу-

ферных слоев. Формула для вычисления матрицы Ŵ  приведена в работе. 

Для направляемой (поверхностной) волны uA , uC , dB  и dD  должны быть 

равны нулю. Тогда из формулы (7) можно получить соотношение  

 
 1 1

11 12 22 21 12 22

1 1
22 21 22

ˆ[ , , , ] [ , , , ] 0T T
d d u u d d u u

W W W W W W
A C B D U A C B D

W W W

 

 

    
     
   

.  (8) 

Это соотношение представляет собой линейное однородное уравнение отно-

сительно амплитуд , ,d d uA C B  и uD , поэтому его нетривиальное решение суще-

ствует только, если  

 ˆdet 0U    (9) 

Формула (9) представляет собой дисперсионное уравнение для 

направляемых мод слоистой полностью анизотропной структуре. 

На основании методов, изложенных во втором разделе выпускной 

квалификационной работы, был разработан алгоритм и программа расчета 

свойств направляемых мод в открытых слоистых анизотропных волноводах. 

Для проверки правильности написания программы расчета свойств 

направляемых мод в открытых слоистых анизотропных волноводах были 

выбраны несколько тестовых примеров. Одним из них является расчет мод 

Дэймона-Эшбаха. В данном случае производились расчеты на примере 

системы, для которой известны аналитические результаты. В качестве такой 

модели была выбрана задача распространения моды Дэймона – Эшбаха в 

ферритовом слое конечной толщины 20l  мкм. Внешнее магнитное поле 

направлено вдоль оси Z, а магнитостатическая волна в пленке 
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распространяется вдоль оси X, как уже было рассмотрено в предыдущих 

примерах. Если принять, что по обеим сторонам пленки находится вакуум, то 

дисперсионное уравнение выглядит следующим образом: 

 
2

2 ( ) (1 exp( 2 ))
4
M

H H M xl


         ,  (10) 

где 04M M   , 0H H  , 5.6   МГц/Э – гиромагнитное отношение, 0M  

- намагниченность насыщения. Тензор магнитной проницаемости для данной 

структуры выглядит следующим образом: 

 

( ) ( ) 0
( ) ( ) 0
0 0 1

a

a

i
i
   

    

 
 


 
  

  (11) 

Причем зависимость компонент тензора от частоты определяется 

соотношениями: 

  
2

2 2 2 2

( )( ) , .H H M H
a

H H

     
   

   

 
 

 
  (12) 

Наличие в тензоре магнитной проницаемости намагниченного феррита 

мнимых недиагональных компонент свидетельствует о магнитной гиротропии 

ферромагнитной среды, при этом компоненты тензора являются функциями 

частоты  , намагниченности 0M  и приложенного магнитного поля 0H  [6]. На 

рисунке 2 представлено пространственное распределение полей в однородной 

пленке при 
9 15.278*10H c   и 

9 130.788*10M c  . Для ферромагнитного 

слоя диэлектрическая проницаемость равна 1  , а магнитная проницаемость 
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определяется тензором (11). Для вакуума 1   и 1  . На рисунке 2 

представлена зависимость безразмерной частоты от безразмерного 

продольного волнового числа. Видно, что рассчитанные точки хорошо 

ложатся на теоретическую сплошную кривую, построенную по 

дисперсионному уравнению (10). 

 

Рисунок 2 - Результаты тестового расчета структуры, содержащей ферромагнитную 

пленку для моды Деймона - Эшбаха 
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ЗАКЛЮЧЕНИЕ 

В ходе выполнения данной выпускной квалификационной работы были 

решены следующие задачи.  

Получены основные соотношения метода матриц передачи для 

слоистых структур из изотропных материалов, при этом все промежуточные 

вычисления сформулированы в матричном виде, обеспечивающим 

проведение вычислений без использования аналитических формул для 

компонент полей.  

Разработана и отлажена программа расчета электродинамических 

параметров плоско - слоистых волноводов из изотропных 

магнитодиэлектриков. Правильность работы программы была проверена на 

значительном количестве тестовых примеров, что подтвердило правильность 

всего численного алгоритма в целом. 

Получены формулы для матрицы Берремана, описывающей 

пространственное изменение полей в пределах одного слоя из анизотропного 

материала в случае полностью заполненных тензоров ̂  и ̂ .  

Сформулирован численный алгоритм получения и решения 

дисперсионного уравнения, описывающего поверхностные (направляемые) 

моды в многослойной анизотропной структуре. Хотя в рамках настоящей 

работы рассматривалась только задача об анализе направляемых мод, с 

помощью развитых подходов могут быть достаточно просто 

проанализированы задачи в другой постановке, например, задача о рассеянии 

и прохождении плоской волны произвольной поляризации, падающей на 

слоистую структуру. 

Разработана и отлажена программа расчета электродинамических 

параметров планарных слоистых волноводов, состоящих и слоев с 

произвольными полностью заполненными тензорами диэлектрической и 

магнитной проницаемостями. Правильность работы программы проверена на 
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нескольких тестовых примерах, включающих слои из анизотропных 

материалов и метаматериалов. 

Разработан алгоритм метода точных конечных разностей 

применительно к слоистой структуре из анизотропных магнитодиэлектриков. 

Предложенные в ходе выполнения выпускной квалификационной 

работы алгоритмы расчета слоистых структур и программы, разработанные на 

их основе, могут быть использованы для анализа современных устройств 

интегральной оптики и магнитооптики, включающих слоистые анизотропные 

структуры, в том числе элементы, изготовленные из метаматериалов. 
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