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Введение 

В последнее время многие исследователи стали проявлять интерес к 

такому классическому явлению в СВЧ электронике как двухпотоковая 

неустойчивость, а также к двухлучевым модификациям различных приборов 

данного диапазона. Данный вывод обусловлен  рядом обзорных статей, 

опубликованных в последнее время1. 

В связи с этим, далее будет построена последовательная линейная 

теории взаимодействия двух электронных потоков методом 

последовательных приближений и методом дисперсионного уравнения. 

Целью данной работы является исследование взаимодействия и 

группировки двух ленточных электронных потоков в приближении 

заданного поля и ознакомление с явлением двухпотоковой неустойчивости, 

проявляющейся в подобных системах. При рассмотрении учитывается 

влияние поля пространственного заряда, а также фокусирующего магнитного 

поля конечной величины. В задачу входит построение линейной теории 

взаимодействия двух потоков электронов методом дисперсионного 

уравнения и методом последовательных приближений. Для сравнения будут 

построены дисперсионные характеристики для системы с одним 

электронным потоком. 

  

                                                
1 А.В. Титов Изв. вузов «ПНД», т. 24, № 2, 2016. 
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Линейная теория взаимодействия двух электронных потоков в 

рамках двумерной теории 

Бесконечно тонкий электронный поток движется в однородном 

магнитном поле с индукцией 0 x const   , направленном вдоль 

положительного направления оси x, со скоростью 0V . 

В качестве исходного уравнения используется уравнение движения 

электронов: 

2

2

d r dr
E B

dt dt
 

 
   

 

 
 (1.1)

 

r -высокочастотное смещение электрона, 

E - вектор напряженности поля, 

e m  , e  и m  – заряд и нерелятивистская масса электрона  

В рамках двумерной теории с использованием исходного уравнения, 

система уравнений движения может быть представлена в виде: 

 

 

 (1.2) 

 

 

 

Bc    – циклотронная частота, 

xпзE , yпзE  – компоненты суммарного поля пространственного заряда. 

Для построения линейной теории взаимодействия двух потоков 

электронов воспользуемся системой уравнений (1.2) с добавлением второго 

пучка. Второй пучок имеет скорость, немного отличающуюся от скорости 

первого, и движется параллельно ему. Для определения тока двух пучков, 

воспользуемся системой уравнений движения электронов с учётом 

пространственного заряда: 
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   (1.3) 

Будем считать, что  

1 2

1 2
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 (1.4) 

 

Тогда можно записать: 
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 (1.5) 

Запишем  выражения для составляющих поля пространственного 

заряда 

2 21 1 1 1
1 1 1 1 1

2 22 2 2 2
2 2 2 2 2

2 21 1 1 1
1 1 1 1 1

2 22 2 2 2
2 2 2 2 2

2
2 2

2
2 2

2
2 2

2
2 2

xпз p p x

xпз p p x

yпз p p y

yпз p p y

y x
E g j g

x x

y x
E g j g

x x

x y
E g j g

x x

x y
E g j g

x x

 
 

 
 

 
 

 
 

 
  

 
 

  
 

 
 

 
 

 
 

  

  

  

  

 (1.6) 

2,10

02
2,1 




 p  – квадрат плазменной частоты, 0  – поверхностная 

плотность заряда, 0  – электрическая постоянная. 
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Линейная теория взаимодействия двух электронных потоков в 

рамках двумерной теории (метод дисперсионного уравнения) 

Для получения дисперсионной характеристики системы с двумя 

электронными потоками, воспользуемся системой уравнений 

характеризующих бесконечно тонкий ленточный электронный поток с 

учётом полученных выражений для компонент напряженности поля 

пространственного заряда уравнение примет  вид: 
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(1.7) 

Выражение (1.7) является дисперсионной характеристикой системы с 

двумя электронными потоками. В силу его громоздкости, расписывать 

определитель полностью не будем. Как видно, оно представляет собой 

уравнение восьмого порядка. 

Один электронный поток 

Для построения теории для системы с одним электронным потоком, 

будем считать, что (S=0). С использованием выражения (1.7) можем 

получить дисперсионное уравнение для системы с один потоком:  

2 2 2 2 2
1 1 1 1 1 1 1 1 1(( ) ) * (( ) ) 0e p x e p y cg g              

(1.8) 
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Проведём сравнение результатов, полученных на основе метода 

дисперсионных уравнений. Для этого построим дисперсионные 

характеристики по полученным уравнениям.  

Построение проводилось при следующих значениях параметров: 

1

2

800 B,

2400 B,

U

U




 

9
1 2 1.256 *10  Гц,p p    

10
0 1.88*10  Гц   

Увеличение индукции магнитного поля приводит к тому, что область 

«циклотронной» двухпотоковой неустойчивости сдвигается вправо по оси 

абсцисс, что можно увидеть на риc. 1.1-1.3. 
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Рис 1.1 Дисперсионная характеристика системы  с двумя электронными потоками (B 

= 0.005 Тл). 

 

 

 
Рис 1.2 Дисперсионная характеристика системы с двумя электронными потоками (B 

= 0.01 Тл). 

 

 
Рис.1.3 Дисперсионная характеристика системы  с двумя электронными потоками   

(B = 0.02 Тл) 
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Рис. 1.5 Дисперсионная характеристика системы с одним электронным потоками. 

 

 
Рис. 1.6 Дисперсионная характеристика системы  с одним электронным потоками 

(действительная часть, мнимая часть) 

Решение уравнения(1.1) иллюстрирует наличие в системе восьми волн 

(рис. 1.1,1.2,1.3). С точки зрения теории связанных волн каждому из пучков 

можно поставить в соответствие по четыре волны – быструю и медленную 

волны пространственного заряда, а также быструю и медленную 

циклотронные волны. 
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Линейная теория взаимодействия двух электронных потоков, 

система в одним электронным потокам (метод последовательных 

приближений) 

Для определения тока двух пучков, сгруппированного в поле бегущей 

волны в первом приближении, воспользуемся системой из 

дифференциальных уравнений для токов с учётом пространственного заряда: 
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(1.9) 

Условием существования решения системы является равенство нулю её 

детерминанта: 
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Графики зависимости ВЧ тока от длины системы 

Построение проводилось при следующих значениях параметров: 

1

2

800 B,

750 B,

U

U




 

9
1 2 1.256 *10  Гц,p p    

10
0 1.88*10  Гц,   

3
0 5*10I   

0,00 .1 ТлВ   

 
Рис. 1.7 ВЧ токи (1- одни ленточного пучка, 2-два ленточных пучков). 

 
Рис. 1.8 Зависимость ВЧ ток от длины системы 
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(красная линия 91 1, 256*10 ;p  Синяя 91 1, 296*10p  , Черная 91 1,316*10p  ). 

 
Рис. 1.9 Зависимость ВЧ ток от длины системы 

( 0.005 ТВ  ) 

 

 
Рис. 1.10 Зависимость ВЧ ток от длины системы 

( 0.001 ТВ  ) 
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Заключение 

Исходя из приведенных статей иностранных работ, можно понять, что 

для решения проблем, связанных с повышением выходных характеристик 

уже известных нам приборов, исследователи стали обращаться к уже 

известным явлениям, таким как двухпотоковая неустойчивость. Добавление 

второго электронного пучка позволяет получить новый тип приборов с 

характеристиками, превосходящими характеристики однолучевых вариантов. 

Проведя анализ полученных теоретических результатов на основе метода 

дисперсионного уравнения можно сделать вывод, что для двухлучевой 

системы существует две области неустойчивости. Т.е. в системе 

сосуществуют две области, в которых действительным  соответствует 

область комплексных  , что обусловлено взаимодействием не только волн 

пространственного заряда, но и циклотронных волн пучков. Из этого следует, 

что при определённых параметрах в системе возможно возникновение 

неустойчивости, а, следовательно, и усиление. Так же проведя анализ 

полученных теоретических результатов на основе метода последовательных 

приближений можно сделать вывод, что с увеличением значения р , 

соответственно увеличивается значение тока в системе, а соответственно 

уменьшается и длина системы. 

 

 


