
Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ
ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ
«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ

ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ
ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО»

Кафедра геометрии

Геометрия пространств над p–кольцами

АВТОРЕФЕРАТ МАГИСТЕРСКОЙ РАБОТЫ

Студентки 2 курса 227 группы
направления 02.04.01 – Математика и компьютерные науки

механико-математического факультета

Ройской Евгении Сергеевны

Научный руководитель
профессор, д.ф.-м.н., доцент В. Б. Поплавский

Зав. кафедрой
д.ф.-м.н., профессор В. В. Розен

Саратов 2018



Введение. Бурное развитие теории алгебр над решетками, в особенности
полуколец и так называемых p–колец, порождаемых булевыми кольцами, в
последнее время тесно связано с их приложениями в различных областях
научного познания. Они применяются и в медицине при решении проблем
диагностики, в генетике, социальных науках, экономике, а также в киберне-
тике, теории вычислимости и определения сложности вычислений. Очевидна
также их связь с такими математическими теориями как полугруппы, полу-
модули, комбинаторика, теория конечных недетерминированных автоматов.
Многие дискретные модели, возникающие в технике, физике, химии и геоло-
гии, построены с помощью таких алгебр. Булевы алгебры и булевы кольца
применимы и в теории графов. Очевидна также их связь с математической
логикой и бинарными отношениями 1234. Все это подтверждает актуальность
представленной темы квалификационной работы.

В данной работе рассматривается p–кольца, которые при p = 2 являются
известным понятием булева кольца, и обобщающих это понятие для любого
простого числа p. Главным образом работа посвящена изучению 3-кольца,
которое представляет собой «плоскость», точки которой представлены упо-
рядоченными парами попарно ортогональных элементов некоторой булевой
алгебры. Устанавливается, что в случае 3-колец может быть введена буле-
возначная функция расстояния между парами точек 3-кольца. Эта функция,
как следует из общей теории булевых функций, определяется единственным
образом. Это позволяет говорить о геометрии p–колец. Естественным обра-
зом появляется понятие окружности в плоскости p–кольца. В работе вводится
функция площади на фигурах в 3-кольце, как булева функция с тремя аргу-
ментами, то есть определенной на тройке точек из 3-кольца. Это делается по
аналогии с определением площади параллелограмма в евклидовой коорди-
натной плоскости, заданного тремя своими вершинами. С помощью функции
площади далее вводятся понятия линий и окружности.

1Monk, J. D. Handbook of Boolean algebras / J. D. Monk, R. Bonnet. Amsterdam : North-Holland Publishing
Co., 1989. 1367 p.

2Сикорский, Р. Булевы алгебры / Р. Сикорский. М. : Изд-во Мир, 1969. 375 с.
3Halmos, P. R. Lectures on Boolean algebras / P. R. Halmos // N. J. : Van Nostrand math. stud., 1963. 147

p.
4Heindorf, L. Beiträge zur Modelltheorie der Booleschen Algebren / L. Heindorf // Seminarbericht No. 53,

Sektion Math. der Humboldt-Univ., Berlin, 1984.
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Основной объект изучения данной магистерской работы - геометрия на
p-кольцах был введен Фостером 5, Земмером 6 и Бэтбедатом 7.

В данной магистерской работе изучаются свойства функций расстояний и
площадей фигур. Получены конкретные формулы для их вычисления. При-
ведены примеры вычислений.

Структура работы. Работа состоит из введения, четырех глав, содержа-
щих 14 параграфов и заключения. В конце приводится список литературы,
состоящий из 22 наименований.

Главной задачей работы является доказательство структурной теоре-
мы для p–колец, введение основных метрических функций на плоскости 3-
кольца, вычисления этих функций в случае, когда p–кольцо определяется
8-элементной булевой алгеброй.

Главные результаты, выносимые на защиту.
1. Классификация p–колец. Приводится подробное доказательство основ-

ной структурной теоремы Фостера-Земмера.
2. Представление 3-кольца над различными булевыми алгебрами.
3. Изучены основные элементы теории булевых функций. Приводится

доказательство теоремы Мюллера–Левенхейма об определимости булевых
функций.

4. Введение метрики в плоскости p–кольца. В качестве примеров приво-
дятся вычисления расстояний между точками в плоскости 3-кольца над 4-х и
8-и элементными булевыми алгебрами. Главный результат: расстояния меж-
ду точками таких 3-колец равны единице соответствующей булевой алгебры.

5. Главным результатом изучения свойств прямых и окружностей в мет-
рической плоскости 3-кольца является следующая теорема:
Теорема 4.8. Следующие условия эквиваленты для подмножества L ⊆ R3 :

1. L – линия;
2. L является слабой линией, для которой любая пара источников P,Q

удовлетворяет условию d(P,Q) = 1;

5Foster, A. L. P–rings and their Boolean-vector representation / A. L. Foster // Acta Math. 1951. Vol. 84.
P. 231-261.

6Zemmer, J. L. Some remarks on p-rings and their Boolean geometry / J. L. Zemmer // Pacific J. Math.
1956. Vol. 6, No. 1. P. 193-208.

7Batbedat, A. Distance booleenne sur un 3-anneau / A. Batbedat // L’Enseign. Math. 1971. 11e Ser. 17. P.
165-185.
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3. L является и слабой линией и окружностью;
4. L является и слабой линией и окружностью радиуса 1;
5. L содержит две точки P и Q, такие что d(P,Q) = 1 и является макси-

мальной с тем свойством, что α(X, Y, Z) = 0 для любых X, Y, Z ∈ L;
6. L – булево подмножество R3, максимальное со свойством α(X, Y, Z) = 0

для любых X, Y, Z ∈ L;
7. L есть множество решений уравнений вида: ax1 + bx2 = ab, где a, b

константы из B, удовлетворяющие следующему условию: a ∪ b = 1.
Основное содержание работы. В 1-ой главе вводятся такие понятия,

как булева алгебра, булевы функции n переменных, а также простые булевы
функции. В конце данной главы представлены канонические формы булевой
функции, а именно каноническая дизъюнктивная и конъюнктивная формы.

2-ая глава посвящена булевым кольцам. Вводится определение p-кольца,
рассматривается структурная теорема Фостера-Земмера о представлении p-
колец.
Определение 2.4. p–кольцом называется коммутативное кольцо с единицей,
в котором для всех элементов x выполняются следующие условия: xp = x,
px = 0.

Заметим, что xp−1 есть идемпотент: xp−1 ·xp−1 = xp ·xp−2 = x ·xp−2 = xp−1.
Теорема 2.2. Обозначим через B булево кольцо, p – простое фиксированное
число, R∗ – множество всех наборов (последовательностей) из p− 1 попарно
ортогональных элементов из B. Тогда сложение и умножение элементов из
R∗ определяются следующим образом:

(a1, a2, . . . , ap−1) + (b1, b2, . . . , bp−1) = (c1, c2, . . . , cp−1),

где ci =
p−1∑
j=0

ajbi−j, a0 = 1 +

p−1∑
j=1

aj, b0 = 1 +

p−1∑
j=1

bj, i, j – целые числа, не

превосходящие mod p,

(a1, a2, . . . , ap−1)(b1, b2, . . . , bp−1) = (d1, d2, . . . , dp−1),
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где di =
p−1∑
j=1

ajbj−1i, j−1 – наименьшее целое число по mod p, такое что jx ≡ 1

mod p, тогда R∗ является p–кольцом, у которого булево кольцо идемпотентов
изоморфному кольцу B.

Кроме того, каждое p–кольцо будет изоморфно p–кольцу такого типа.
Следствием из теоремы является то, что любой элемент p–кольца это век-

тор, компоненты которого являются ортогональные элементы булевой алгеб-
ры, мы получаем векторную алгебру, только координатами являются элемен-
ты булевой решетки.
Следствие 2.3. Каждый элемент, принадлежащий p–кольцу может быть
представлен в виде a = a1 + 2a2 + · · ·+ (p− 1)ap−1, где 2, . . . , p− 1 представ-
ляют собой последовательные слагаемые 1 (например, 2=1+1), ai попарно
ортогональные идемпотентны.

Далее определяется 3-кольцо следующим образом:
Пусть R3 = {X = (x1, x2) | x1, x2 ∈ B, x1x2 = 0}, где 〈B,∪, ·,′ , 0, 1〉 это

булева алгебра есть множество, в котором определим операции следующим
образом:

(x1, x2) + (y1, y2) = (x1 + y1 + x1y2 + x2y1 + x2y2, x2 + y2 + x1y2 + x2y1 + x1y1),

(x1, x2)(y1, y2) = (x1y1 + x2y2, x1y2 + x2y1),

где X = (x1, x2), Y = (y1, y2) элементы B2 компоненты, которых ортогональ-
ны 14.
Теорема 2.5. R3 есть 3-кольцо.

3-ья глава посвящена метрическим отношениям на p-кольце.
Определение 2.7. Булево подмножество B2(R3) есть подмножество
S ⊂ B2(R3), характеризующееся уравнением вида: f(X) = 0, где f это булева
функция или булево-значный многочлен.

Вводится понятие функции расстояния:
Определение 3.1. Булевозначная функция d : S2 → B называется функци-
ей расстояния пространства S, которая удовлетворяет следующим аксиомам
для всех X, Y, Z ∈ S:

14Rudeanu, S. Lattice functions and equation / S. Rudeanu. L., N. Y. : Springer, 2001. 435 p.
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D1. d(X, Y ) = 0 ⇔ X = Y ;
D2. d(X, Y ) = d(Y,X);
D3. d(X, Y ) 6 d(X,Z) + d(Z, Y ).
Теорема 3.1. Для булевой функции d : B4 → B (простому булево-значному
многочлену d : R2

3 → B) нижеприведенные условия эквивалентны:
1. d удовлетворяет (D1);
2. d удовлетворяет(D1)− (D3);
3. d есть функция

d(X, Y ) = (x1 + y1) ∪ (x2 + y2) (1)

С помощью вышеприведенной теоремы установлено, что в случае про-
странства R3 расстояние (1) может быть записано следующим единственным
образом:

d(X, Y ) = x1 + x2 + y1 + y2 + x1y2 + x2y1.

Лемма 3.3. Расстояние между двумя различными элементарными вектора-
ми A,B из 3-кольца над булевыми алгебрами 22 и 23, то есть R3(B

2
2) и R3(B

3
2)

есть 1.
Доказательство данного факта сопровождается примером для булевой ал-

гебры 23.
Далее приводится понятие функции площади, c помощью которой уста-

навливается, что в случае пространстваR3, площадь может иметь следующий
вид: α(X, Y, Z) = y1z2 + y2z1 + x1z2 + x2z1 + x1y2 + x2y1 или

α(X, Y, Z) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 1

x1 y1 z1

x2 y2 z2

∣∣∣∣∣∣∣∣∣∣∣∣∣
Данная формула показывает аналогию с площадью параллелограмма в слу-
чае аналитической евклидовой геометрии. Доказательство данного факта со-
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провождается вычислением площадей в плоскости 3-кольца над булевой ал-
геброй 23.
Определение 3.2. Даны 3 точки X, Y, Z ∈ S, положим d(Y, Z) = d1,
d(X,Z) = d2, d(X, Y ) = d3. Функция α : S3 → B называется функци-
ей площади пространства S, при условии существования булевой функции
a : S3 → B, удовлетворяющая нижеприведенным условиям 21:
A1. α(X, Y, Z) = a(d1, d2, d3) для любых X, Y, Z ∈ S;
A2. a(0, d2, d3) = a(d1, 0, d3) = a(d1, d2, 0) = 0;
A3. a симметрична в d1, d2, d3;
A4. a(1, 1, 1) = 1.

Заметим, что для любого k ∈ B существует X, Y ∈ S такие, что d(X, Y ) = k,
полагаем X = (k, 0) и Y = (0, 0), поэтому a(d1, d2, d3) в действительности
определена на B3. Отметим также, что (A1) влечет за собой следующее свой-
ство:

d(Xi, Xj) = d(Yi, Yj), i, j = 1, 2, 3⇒ α(X1, X2, X3) = α(Y1, Y2, Y3).

Лемма 3.5. Для каждой точки X, Y, Z ∈ S выполняется следующее условие:

d1d2d3 = d1 + d2 + d3.

Теорема 3.6. Следующие условия эквивалентны для булевой функции
α : S6 → B (для булево-значного полинома α : R3

3 → B):
1. α удовлетворяет (A1)− (A4);
2. α удовлетворяет (A1), (A2) и (A4);
3. α удовлетворяет (A1) и функция a, ассоциированная с α имеет следу-

ющий вид: a(d1, d2, d3) = d1d2d3;
4. α удовлетворяет (A1) и функция a, ассоциированная с α есть

a(d1, d2, d3) = d1 + d2 + d3. (2)

21Melter, R. A. Geometry of 3–rings / R. A. Melter, S. Rudeanu // Coll. Math. Soc. Janos Bolyai. 1974. Vol.
14. P. 249-269.
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Замечание 3.7. Функция (2) может быть записана в следующем виде:
α(X, Y, Z) = [(y1+ z1)∪ (y2+ z2)]+ [(x1+ z1)∪ (y2+ z2)]+ [(x1+y1)∪ (x2+y2)]
или, что тоже самое

α(X, Y, Z) = (y1 + z1)(y2 + z2) + (x1 + z1)(x2 + z2) + (x1 + y1)(x2 + y2).

4-ая глава посвящена линейной геометрии в плоскости 3-кольца.
Определение 4.1. Пусть P,Q – точки из R3. Слабая линия, проходящая
через P и Q есть множество l(P,Q) = {X ∈ R3|α(P,Q,X) = 0}, в то время
как, точки P и Q говорят порождают (пара источников) линию l(P,Q).

Следующее предложение характеризует слабые линии, как булевы под-
множества R3.
Предложение 4.1. Подмножество пространства R3 есть слабая линия тогда
и только тогда, когда оно есть множество решений уравнений вида

ax1 + bx2 = ab для некоторых a, b ∈ B. (3)

Точки P,Q слабой линии (3) порождают ее тогда и только тогда, когда

p1 + q1 = b и p2 + q2 = a.

Предложение 4.4. Любые две слабые линии

ax1 + bx2 = ab,

fx1 + gx2 = fg,

соприкасаются по крайней мере в одной точке, они имеют единственную точ-

ку соприкосновения, тогда и только тогда, когда

∣∣∣∣∣∣∣∣∣
a b

f g

∣∣∣∣∣∣∣∣∣ = 1.

Далее представлены точки из 3-кольца, которые образуют слабую линию.
Введем аналог понятия окружности, которое будет служить предпосыл-

кой для более веского понятия линии.
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Определение 4.2. Дана точка C ∈ R3 и элемент r ∈ B, окружность с цен-
тром C и радиуса r есть множество C(r) = {X3 ∈ R|d(C,X) = r}.
Предложение 4.5. Подмножество пространства R3 является окружностью
тогда и только тогда, когда оно является множеством решений уравнений
вида: ax1 + bx2 = c, где a, b - константы из B, удовлетворяющие a ∪ b = 1.

Единственным центром окружности является точка (b′, a′) и радиус имеет
вид r = a+ b+ c.

Следствие 4.6. Для каждых C ∈ R и r ∈ R3, окружность C(r) не является
пустым множеством и ее уравнение (3) определено однозначно.
Предложение 4.7. Если точки X, Y, Z располагаются на окружности, тогда
α(X, Y, Z) = 0.

Определение 4.3. Линия пространства R3 есть слабая линия, которая име-
ет пару источников P,Q, таких что d(P,Q) = 1.

Теорема 4.8. Следующие условия эквиваленты для подмножества L ⊆ R3 :

1. L – линия;
2. L является слабой линией, для которой любая пара источников P,Q

удовлетворяет условию d(P,Q) = 1;

3. L является и слабой линией и окружностью;
4. L является и слабой линией и окружностью радиуса 1;
5. L содержит две точки P и Q, такие что d(P,Q) = 1 и является макси-

мальной с тем свойством, что α(X, Y, Z) = 0 для любых X, Y, Z ∈ L;
6. L – булево подмножество R3, максимальное со свойством α(X, Y, Z) = 0

для любых X, Y, Z ∈ L;
7. L есть множество решений уравнений вида: ax1 + bx2 = ab, где a, b

константы из B, удовлетворяющие следующему условию: a ∪ b = 1.
Заключение. В данной работе была изучена геометрия пространства яв-

ляющуюся p–кольцом, частности, рассмотрен случай когда p = 3. Было най-
дено представление элементов этого p–кольца, в виде попарно ортогональных
элементов некоторой булевой алгебры (доказана теорема Фостера-Земмера).
Рассмотрены такие понятия, как функция расстояния, функция площади, а
так же были рассмотрены такие элементы линейной алгебры 3-кольца, как
линия, окружность. Особое внимание было уделено 3-кольцу, порожденно-
му 8-элементной булевой алгеброй. Для него были просчитаны все функции
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расстояний, функции площадей, найдены линии и окружности. Это новые и
главные результаты данной магистерской работы.
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