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Introduction. The elliptic functions are considered as the inverse of the elliptic integrals orig-

inally based in the works of Abel and Jacobi. An elliptic function is a meromorphic function,

allowing for the periods, all of which can be formed by addition and subtraction of the two

initial periods of w1 and w2 having an imaginary relationship. In short, a meromorphic func-

tion is called elliptic, if it is doubly periodic with periods of w1 and w2 , for which there is an

imaginary number. Such a function f (u) satisfies the following1:

f (u+w1) = f (u) (1)

and

f (u+w2) = f (u). (2)

We shall always take w1 and w2 in clockwise order; that is we shall assume that
w1
w2

has

positive imaginary part. For a given lattice L, a meromorphic function on C is said to be an

elliptic function relative to L, if f (u+ l) = f (u) for all l ∈ L. It suffices to check this

property l = w1 and l = w2. In other words, an elliptic function is periodic with two periods

w1 and w2. Such a function is determined by its values on the fundamental parallelogram P.

This fundamental parallelogram P can be defined by:

P = {mw1 +nw2|m,n ∈ Z}. (3)

We first observe that no elliptic function (except a constant) can be bounded over the interior

and perimeter of a period parallelogram, for if it were, it would be bounded over the whole

complex plane and hence, by Liouville’s theorem, would be constant. It must, accordingly,

have some poles inside or on the parallelogram and the number of these must be finite for,

otherwise, there would be a limit point of such singularities and this would be an essential

singularity. It is always possible, therefore, to translate the parallelogram in the complex plane

so as to create a cell for which there are no singularities on its perimeter. The number of

poles within the cell (each multiple pole being counted according to its order) is termed the

order of the elliptic function. The Jacobian functions each have a pair of simple poles within

a cell and so are of second order. P(u) has a double pole at each of the congruent points

u = 2mw1 + 2nw3 and hence the Weierstrass function is also of order two. Its derivative

℘′(u) has a triple pole at u = 0 and is of third order.

The main content of the work. An elliptic function is a meromorphic function that is pe-

riodic in two directions.The order of an elliptic function is never less than 2, so in terms of

1Lavrentev, M.A. Methods of the theory of functions of a complex variable / M. A. Lavrentev, B. V.Shabat. M. : ”Nauka”, 2002. P.

688-694.
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singularities, the simplest elliptic functions are those of order 2. These can be divided into two

classes: those which have a single irreducible double pole in each cell at which the residue is

zero, and those which have two simple poles in each cell at which the two residues are equal

in absolute value, but of opposite sign2.

As a periodic function of a real variable is defined by its values on an interval, an elliptic func-

tion is determined by its values on a fundamental parallelogram, which then repeat in a lattice.

In geometry and group theory, a lattice in Rn is a subgroup of Rn which is isomorphic to Zn,

and which spans the real vector space Rn . In other words, for any basis of Rn, the subgroup of

all linear combinations with integer coefficients of the basis vectors forms a lattice. A lattice

may be viewed as a regular tiling of a space by a primitive cell.

A fundamental pair of periods is an ordered pair of complex numbers that define a lattice in

the complex plane. This type of lattice is the underlying object with which elliptic functions

and modular forms are defined. The fundamental pair of periods is a pair of complex numbers

ω1,ω2 ∈C such that their ratio ω1

ω2
is not real. In other words, considered as vectors in R2, the

two are not collinear.

The lattice generated by ω1 and ω2 is

P = Λ = {mω1 +nω2|m,n ∈ Z}. (4)

This lattice is also sometimes denoted as λ (ω1,ω2) to make clear that it depends on ω1 and ω2.

It is also sometimes denoted by Ω or Ω(ω1,ω2), or simply by (ω1,ω2). The two generators

ω1 and ω2 are called the lattice basis. The parallelogram defined by the vertices 0, ω1 and ω2

is called the fundamental parallelogram.

A doubly periodic function cannot be holomorphic, as it would then be a bounded entire func-

tion, and by Liouville’s theorem every such function must be constant. A holomorphic function

is a complex-valued function of one or more complex variables that is complex differentiable in

a neighborhood of every point in its domain. The existence of a complex derivative in a neigh-

borhood is a very strong condition, for it implies that any holomorphic function is actually

infinitely differentiable and equal to its own Taylor series (analytic). Holomorphic functions

are the central objects of study in complex analysis. Though the term analytic function is often

used interchangeably with ”holomorphic function”, the word ”analytic” is defined in a broader

sense to denote any function (real, complex, or of more general type) that can be written as

a convergent power series in a neighborhood of each point in its domain. The fact that all

holomorphic functions are complex analytic functions, and vice versa, is a major theorem in

complex analysis.

2Whittaker, E.T. A Course of modern analysis / E. T. Whittaker. L. : Cambridge University Press, 1902. P. 63-70.
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Holomorphic functions are also sometimes referred to as regular functions or as conformal

maps. A holomorphic function whose domain is the whole complex plane is called an en-

tire function3. The phrase ”holomorphic at a point z0” means not just differentiable at z0,

but differentiable everywhere within some neighborhood of z0 in the complex plane. Given a

complex-valued function f of a single complex variable, the derivative of f at a point z0 in its

domain is defined by

f ′(z) = (
f (z)− f (z0)

z− z0
),where lim z→ z0. (5)

Liouville’s theorem, named after Joseph Liouville, states that ”every bounded entire function

must be constant. A function f defined on some set X with real or complex values is called

bounded, if the set of its values is bounded. In other words, there exists a real number M such

that

| f (z)| ≤M, for all z in C is constant.

Intuitively, a meromorphic function is a ratio of two well-behaved(holomorphic) functions.

Such a function will still be well-behaved, except possibly at the points where the denominator

of the fraction is zero. If the denominator has a zero at z and the numerator does not, then the

value of the function will be infinite; if both parts have a zero at z, then one must compare the

multiplicities of these zeros.

A doubly periodic function with periods 2ω1 and 2ω2 such that

f (z+2ω1) = f (z+2ω2) = f (z).

which is analytic and has no singularities except for poles in the finite part of the complex

plane. The half-period ratio τ = ω1

ω2
must not be purely real, because if it is, the function

reduces to a singly periodic function if τ is rational, and a constant if τ is irrational (Jacobi

1829), ω1 and ω1 are labeled such that:

I[τ] ≡ I[
ω1

ω2
]> 0,where I[τ] is imaginary part.

A ”cell” of an elliptic function is defined as a parallelogram region in the complex plane in

which the function is not multi-valued. Properties obeyed by elliptic functions include:

Theorem 1.1. The number of poles of an elliptic function f (z) in any cell is finite. (Copson,

1935). If there were an infinite number, then the set of these poles would have a limit point.

But the limit point of poles is an essential singularity, and so by definition the function would

not be an elliptic function.

3Bottazzini, U. Hidden harmony geometric fantasy: The rise of complex function theory / U. Bottazzini, J. Gray. N. Y. : Springer-

Verlag, 2013. P. 15-27.
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Theorem 1.2. The number of zeroes of an elliptic function f (z) in any cell is finite. (Whittaker

and Watson, 1927). If there were an infinite number, then it would follow that the reciprocal

of the function would have an infinite number of poles. Therefore, it would have an essential

singularity, and this would also be an essential singularity of the original function. Again, this

would mean that the function was not an elliptic function.

Theorem 1.3. The sum of all residues of an elliptic function in any period parallelogram is

zero.

Let us choose the parallelogram P spanned by {ω1,ω2}. Then

C =Uω∈L(P+ω).

Let C be the closed curve C = ∂P with positive orientation. The residue of an elliptic function

f in P is

∫

c
f (z)dz =

∫

1
f (z)dz+

∫

2
f (z)dz+

∫

3
f (z)dz+

∫

4
f (z)dz.

Here C1 is the path connecting 0 and ω1 , C2 is the path connecting ω1 and ω1 + ω2 and C3 is

the point connecting ω1 + ω2 and ω2 and C4 is the path connecting ω2 and 0. We also assume

that f has no poles on C: (If f has poles on C, we can use another parallelogram such that the

poles of f do not lie on its boundary.) Using the periodicity of f , we obtain

∫

1
f (z)dz+

∫

2
f (z)dz =

∫

3
f (z)dz+

∫

4
f (z)dz = 0.

This shows that

∑
p∈P

resp( f ) =
∫

c
f (z)dz = 0.

Corollary 1.1. The number of zeros of a non constant elliptic function in a period parallel-

ogram P is equal to the number of poles in P. The zeros and poles are counted according to

their multiplicities4. To make it clear let’s say f be a non constant elliptic function. Then
f ′(z)
f (z)

is also an elliptic function. By argument principle, the number of zeros minus the number of

poles of f in P equals to the sum of residues of f in P, in other words,

1

2πi

∫

∂ p

f ′(z)
f (z)

dz = number of zeros of f (z) in P - number of poles of f (z) in P.

Theorem 1.4. An elliptic function without poles is a constant. An elliptic function f with

4Koblitz, N. Introduction to elliptic curves and modular forms / N. Koblitz. N. Y. : Springer-Verlag, 1984. P. 14-21.
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poles is a bounded entire function. By Liouville’s theorem, f must be a constant.

Proposition 1.1. The number of zeros
poles

of an elliptic function in any cell is finite. Assume {zn}g
is a sequence of poles of an elliptic function f with zi 6= z j. Since a cell is bounded, Bolzano-

Weierstrass theorem implies that {zn}g has a limit point. The limit point would be an essential

singularity of f which leads to a contradiction to the assumption that f is a meromorphic func-

tion. Notice that the zeros of f are poles of 1
f
: Since 1

f
is again elliptic, 1

f
can have only finite

many poles in a cell, i.e. f has only finitely many zeros in a cell.

Theorem 1.5. An elliptic function f (z) of order m has m zeroes in each cell. (Copson, 1935).

If f (z) is of order m and has n zeroes in a cell, counted with multiplicity, then (n−m) is equal

to the sum of residues of
f ′(z)
f (z)

at its poles in the cell. But f ′(z) is an elliptic function with

the same periods as f (z), so it follows that
f ′(z)
f (z)

is similarly an elliptic function. Therefore,

n−m = 0 by Theorem 1.3.

Theorem 1.6. The sum of the zeros of a non constant elliptic function in a period-parallelogram

differs from the sum of its poles by a period. Let’s say for example P, C, and Ci ; for i = 1,2,3

be as that in Theorem 1.2. Suppose a1, .....,an and b1, ....,bn are zeros and poles of an elliptic

function f respectively5: Then

n

∑
i=1

ai−
n

∑
j=1

b j =
1

2πi

∫

c

f ′(z)
f (z)

dz.

Using the periodicities of f ,

∫

c1

z
f ′(z)
f (z)

dz+
∫

c3

z
f ′(z)
f (z)

dz =
∫

c1

(z− (z+ω2)
f ′(z)
f (z)

dz = ω2

∫

c1

z
f ′(z)
f (z)

dz.

∫

c2

z
f ′(z)
f (z)

dz+
∫

c4

z
f ′(z)
f (z)

dz =
∫

c4

(z− (z+ω1)
f ′(z)
f (z)

dz = ω2

∫

c4

z
f ′(z)
f (z)

dz.

This implies that

n

∑
i=1

ai−
n

∑
j=1

b j =
1

2πi
(ω2

∫ ω2

0

f ′(z)
f (z)

dz−ω1

∫ ω1

0

f ′(z)
f (z)

dz).

Then we can sees that both

1

2πi

∫ ω1

0

f ′(z)
f (z)

dz.

and

1

2πi

∫ ω2

0

f ′(z)
f (z)

dz,

5Koblitz, N. Introduction to elliptic curves and modular forms / N. Koblitz. N. Y. : Springer-Verlag, 1984. P. 14-21.
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are integers.

In fact, choosing a branch of log; we have

∫ ω j

0

f ′(z)
f (z)

dz = log(
f ′(z)
f (z)

).

Since f (ω j) = f (0),we f ind
∫ ω j

0
f ′(z)
f (z)

dz = log(1) = 2n jπi, for some integers n j.

This implies that

n

∑
i=1

ai−
n

∑
j=1

b j = mω1 +nω2, for n,m ∈ Z.

Theorem 1.7. If f (z) and g(z) are elliptic functions with poles at the same points, and with

the same principal parts at these points, then f (z) = g(z) + A, for some constant A . (Jones and

Singerman, 1987). The function f (z)− g(z) is an elliptic function of order zero, as it has no

poles.

Theorem 1.8. If f (z) and g(z) are elliptic functions with zeroes and poles of the same order at

the same points, then

f (z) = Ag(z), for some constant A. (Jones and Singerman, 1987). By a similar argument to

the previous proof, we have that the function
f (z)
g(z)

is also an elliptic function of order zero.

Definition 1.1. The order of an elliptic function is the number of poles counting orders, modulo

its lattice. An elliptic function has order 0 if and only if it is a constant function. There are

no elliptic functions of order 1, since that would entail having a residue that is both zero and

non-zero because it’s at a pole of order one. For order 2, there are two possibilities one pole

of order 1 with residue 0 or two poles of order 1 with residues that are additive inverses of one

another. By Mittag-Leffler’s theorem, functions satisfying both cases exist6. For the first case,

it is tempting to guess

∑
ω∈L

1

(z−ω)2
.

but this series is neither absolutely nor uniformly convergent on compact subsets of C
L

, which

means it is not necessarily periodic nor meromorphic. This guess can be salvaged by intro-

ducing some correcting terms, and in fact this is what Weierstrass himself did. The correcting

terms are analogous to those found in the partial fraction decompositions of functions such as

the secant.

Definition 1.2. The Weierstras function with associated lattice L is given by the following

6Koblitz, N. Introduction to elliptic curves and modular forms / N. Koblitz. N. Y. : Springer-Verlag, 1984. P. 14-21.
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equation for z ∈ L:

℘(z) =
1

z2
+ ∑

ω∈L(0)

[
1

(z−ω)2
+

1

ω2
].

Theorem 1.9.. The Weierstrass function (℘) is an even elliptic function. It can be shown

that the series is absolutely convergent and that the series is uniformly convergent on compact

subsets of C
L

. One method uses estimation techniques from analysis and comparison with an

integral. Absolute convergence shows that the function is even, since replacing z with −z

simply rearranges the terms. Uniform continuity shows that the function is meromorphic,

since the individual terms are meromorphic.

For periodicity on L, the derivative is as follows, which is clearly periodic.

℘′(z) =−2 ∑
ω∈L(0)

1

(z−ω)3
.

We know that ℘(z) and (z+ω1) differ by a constant because they have the same derivative,

and this constant can be seen to be 0 by taking z = 1
2
(ω1). The proof can be completed by

repeating this with ω2.

The man who first studied the lemniscatic integral from a purely functional point of view was

Legendre.In his paper he showed for the first time how any integral of the form7:
∫ Q(z)dz

R(z)

, where Q(z) is a rational function in z and R(z) is the square root of a quartic (with real

coefficients), can be reduced to one of the following form:

∫

Q(z)dz
√

(1− z2)(1− k2z2)
. (6)

In the above equation, if we substitute z = sin(φ) it farther reduces to the following form:

∫

Q(z)dφ
√

(1− k2sin2(φ))
. (7)

The variable φ Legendre called the amplitude of the elliptic integral, the parameter k the

modulus, and quantity b defined as
√

1− k2 the complementary modulus. As Legendre did,

denoting: ∆ =
√

(1− k2sin2φ), Legendre showed the three distinct kinds of elliptic inte-

grals.
∫ x

0

dφ

∆
. (8)

7Hancock, H. Lectures on the theory of elliptic functions / H. Hancock. N.Y.: Wiley, 1910. P. 1-6.
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∫ x

0
∆dφ . (9)

∫ x

0

dφ

(1+n2sin2φ)∆
. (10)

Where n may be real or complex, and according to Legendre’s terminology he called them

first kind, second kind and third kind respectively. All the integrals were regarded as functions

of their upper end point x. He wrote F for a typical integral of the first kind and E or G for

one of the second kind. The complete integrals
∫

π
2

0
dφ
∆

and
∫

π
2

0 ∆dφ he denoted F ′ and E ′,
respectively, or F ′(k) and E ′(k)when he wanted to think of them as functions of the modulus

k. He said it was indispensable that the modulus k and the amplitude φ were real, and that

k < 1.

Legendre’s elliptic integrals of the first kind:

• The incomplete integrals of the first kind are of the form:

F(ϕ,k) =
∫ ϕ

0

dt
√

(1− k2sin2t)
=

∫ sin(ϕ)

0

dx
√

(1− x2)(1− k2x2)
. (11)

• The complete integrals of the first kind are of the form:

F(
π

2
,k) = K(k) =

∫ π
2

0

dt
√

(1− k2sin2t)
=

∫ 1

0

dt
√

(1− x2)(1− k2x2)
= F (12)

F(
π

2
,k′) =

∫ π
2

0

dt
√

(1− k
′2sin2t)

= F(k′) = F (13)

Legendre’s elliptic integrals of the second kind:

• The incomplete integrals of the second kind are of the form:

E(ϕ,k) =
∫ ϕ

0

√

(1− k2sin2t)dt =
∫ sin(ϕ)

0

√
1− k2x2

√

(1− x2)
dx. (14)

• The complete integrals of the second kind are of the form:

E(k) =
∫ π

2

0

√

(1− k2sin2t)dt =
∫ 1

0

√
1− k2x2

√

(1− x2)
dx. (15)

10



or

E =
∫ 1

0

√
1− k2x2

√
1− x2

dx. (16)

E ′ =
∫ 1

0

√
1− k

′2x2

√
1− x2

dx. (17)

If we put dφ = dn(u)du, ∆φ = dn(u), we get:

E(k,φ) = E(u) =
∫ u

0 (dn2u)du =
∫ u

0 (1− k2sn2u)du

Legendre’s elliptic integrals of the third kind:

• The incomplete integrals of the third kind are of the form:

π(n;ϕ,k) =
∫ ϕ

0

dt

(1+n.sin2t)
√

(1− k2sin2t)
. (18)

π(n;ϕ,k) =
∫ sin(ϕ)

0

dt

(1+nx2)
√

(1− x2)(1− k2x2)
. (19)

• The complete integrals of the third kind are of the form:

π(n,k) =
∫ π

2

0

dx

(1−n.sin2x)
√

(1− k2sin2x)
. (20)

π ′(n,k) =
∫ π

2

0

dx

(1+n.sin2x)
√

(1− k2sin2x)
. (21)

The Jacobian sn, cn and dn functions. Suppose we have the two integrals (a):u=
∫ x

0
dt√
1−t2

,(b) :

1
2
π =

∫ 1
0

dt√
1−t2

, where−1 < x < 1 is real. If we take the square root to be positive for u

between 0 and π , then this defines u as an odd function of x. By inversion of the integral, we

have defined z as an odd function of u. If denote this function by sin(u), then (a) reduces to the

form u= sin−1x. We can define a second function of cos(u) by cos(u) =
√

1− sin2(u).

By taking the square root positive for u between−1
2
π and

1
2
π , ?we have u as an even func-

tion of x. It follows that we have the identity sin2(u)+ cos2(u) = 1. We can also note that

sin(0) = 0 and cos(0) = 1.

Suppose now we consider the derivative of (a) with respect to x, which is clearly
du
dx
= 1√

1−x2
.

It follows that
d
du
{sin(u)}=

√

1− sin2(u) = cos(u), as x = sin(u). Moreover, by dif-

ferentiation (b), we obtain
d
du
{sin(u)}=−sin(u). Now, let us see Jacobi elliptic function

11



as functions of the complex variable u, the Jacobi elliptic functions sn(u),cn(u) and dn(u)
are doubly periodic single valued functions of u.

i. The inverse function of the Legendre elliptic function F is φ = F−1(u). and the Jacobi

elliptic function sin(u) = sin(φ) or sn(u|n) is single valued for all complex parameters

with

u =
∫ sn(u)

0

du
√

(1− t2)(1− kt2)(u)
, (22)

and it is analogous to the function sin(u) by the relation

u =
∫ sin(u)

0

dt
√

(1− t2)
, (23)

sn(u) is an odd single valued doubly-periodic function of u, with two poles in each period-

parallelogram, the distance between the poles being half of one of the periods. The two periods

will be connected by a relation, as they depend only on the single constant k, and the constant

parameter k is called modulus.

ii. The Jacobi elliptic function cn is defined by cn(u) = cn(u|k) = cos(ϕ).cn(u) =
√

1− sn2(u) and cn(u) is an even single valued function of u.

iii. The Jacobi elliptic function dn is defined by dn(u) = dn(u|k) =
√

1− k2sn2(u)
and dn(u) is also a single valued function of u.This is because both cn(u) and dn(u) have

definite values at a point u = 0, it follows that the functions cn(u) and dn(u) are single

valued functions of u. They obviously satisfy the relations:

sn2(u)+ cn2(u) = 1 (24)

and

k2sn2(u)+dn2(u) = 1. (25)

The functions sn(u),cn(u),dn(u) are often called the Jacobian elliptic functions. Now,

let us see the expression of cn(u) and dn(u) by means of integrals,so by differentiating the

equation cn2(u) = 1− sn2(u), then we get:

cn(u) d
du

cn(u) = −sn(u)cn(u)dn(u),then we get:
d

du
cn(u) = −sn(u)dn(u) and this

is equal to the equation−
√

(1− cn2(u))(k′2+ k2cn2(u)), where k
′2 = 1− k2.

Thus let us put cn(u) = r, then du = dr√
(1−r2)(k

′2+k2r2)
, therefore by putting u = 0 we

12



have cn(u) = cn(0) = 1, and by integrating both sides we get:

u =
∫ 1

cn(u)

dr
√

(1− r2)(k
′2 + k2r2)

. (26)

Similarly d
du

dn(u) =−k2sn(u)cn(u), then we get:

u =
∫ 1

dn(u)

dr
√

(1− r2)(r2− k
′2)

. (27)

The Jacobi elliptic functions are arise from the inversion of the elliptic integral of the first

kind8. Let us now denote the three basic functions as: sn(u,k),cn(u,k) and dn(u,k),

where k is the elliptic modulus. From the elliptic integral of the first kind we have u =
F(φ ,k) =

∫ φ
0

dt√
1−k2sin2(t)

,where 0 < k2 < 1, k = mod(u) is the elliptic modulus, and

φ = am(u,k) = am(u) is the Jacobi amplitude, given by: φ = F−1(u,k) = am(u,k).

Then we get:

sin(φ)= sin(am(u,k))= sn(u,k)cos(φ)= cos(am(u,k))= cn(u,k)
√

(1− k2sin2(φ))=
√

(1− k2sin

and these functions are doubly-periodic functions satisfying:

sn(u,θ) = sin(u),cn(u,θ) = cos(u) and dn(u,θ) = 1.

Periodicity of the Jacobian functions. Now let us see the constant K′ and the periodicity of

K,K + iK′ and iK′ with the help of the addition-theorem9:

• Periodicity of the elliptic functions with respect to K, the constant K is intimately con-

nected with the periodicity of the elliptic functions sn(u),cn(u),dn(u). Therefore we

can see that, 4K is a period for the functions sn(u) and cn(u), and 2K is a period for

the function dn(u).

• The constant K′, let us denote the following integral by K′, but the sign of i must be

understood in the light of the relation which was used in the transformation. This lead us

to the results

s = sn(K + iK′) = 1
k
, and cn(K + iK′) = ik

k′ .

• Periodicity of the elliptic functions with respect to K + iK′, we have seen that, K′ has

an important connection with the second period of the functions sn(u),cn(u),dn(u).

8Bottazzini, U. Hidden harmony geometric fantasy: The rise of complex function theory / U. Bottazzini, J. Gray. N. Y. : Springer-

Verlag, 2013. P. 15-27.
9Cayley, A. An elementary treatise on elliptic functions / A. Cayley. London : Bell and Sons, 1895. P. 1-20.
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Therefore, the function cn(u) has a period at 2K + 2iK′ and the functions sn(u) and

dn(u) have a period at 4K +4iK′.

• Periodicity of the elliptic functions with respect to iK′, Therefore we get that, the function

sn(u) has a period at 2iK′ and the functions cn(u) and dn(u) have a period at 4iK′.

• The behavior of the functions sn(u),cn(u),dn(u) at the point u = iK′, for the points

neighborhood the point u = 0,the function sn(u) can be expanded by Taylor’s theorem.

Therefore this shows that at the point u = iK′ the functions sn(u),cn(u) and dn(u) a

simple poles, with the residues
1
k
,
−i
k

and−i respectively.

Conclusion. Legendre’s work, was a simplification of the general elliptical integral, and the

subsequent computation of the values of elliptical integrals as functions of the coefficients and

their upper end points. The analogy between the trigonometric and elliptic integrals is helpful

to compute tables of, say, the sine function, one would make repeated use of the addition

formula.

In the other hand, as a result of Jacobian functions we get the following points periodicity

results:

• sn(u) is a single valued doubly-periodic function of u, its periods being 4K and 2iK′.
Its singularities are at all points congruent with u = iK′ and u = 2K + iK′ ; they are

simple poles, with the residues
1
k

and−1
k

respectively; and the function is zero at all points

congruent with u = 0 and u = 2K. When k2 is real and positive and less than unity, it

is easily seen that K and K′ are real, and sn(u) is real for real values of u and purely

imaginary for purely imaginary values of u.

• cn(u) is a single valued doubly-periodic function of u its periods being 4K and 2K +
2iK′. It’s singularities are at all points congruent with u = iK′ and u = 2K+ iK′, they

are simple poles, with the residues
i
k

and − i
k

respectively; and the function is zero at all

points congruent with u = K and u = 3K.

• dn(u) is a single valued doubly-periodic function of u, its periods being 2K and 4iK′.
Its singularities are at all points congruent with u = iK′ and u = 3iK′; they are simple

poles, with the residues −i and +i respectively; and the function is zero at all points

congruent with u = K + iK′ and u = K +3iK′.
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