
Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ

ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ

ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИМЕНИ Н. Г. ЧЕРНЫШЕВСКОГО»

Кафедра математической

кибернетики и компьютерных наук

СОЗДАНИЕ КРЕДИТНОГО КОНВЕЙЕРА НА ОСНОВЕ

МИКРОСЕРВИСНОЙ АРХИТЕКТУРЫ

АВТОРЕФЕРАТ БАКАЛАВРСКОЙ РАБОТЫ

студента 4 курса 411 группы

направления 02.03.02 — Фундаментальная информатика и информационные

технологии

факультета КНиИТ

Мирзоева Никиты Романовича

Научный руководитель

к. ф.-м. н. С. В. Миронов

Заведующий кафедрой

к. ф.-м. н. С. В. Миронов

Саратов 2018

СОДЕРЖАНИЕ

ВВЕДЕНИЕ . 3

1 Использование микросервисной архитектуры при создании кредит-

ного конвейера . 4

1.1 Микросервисная архитектура . 5

2 Разработка прототипа кредитного конвейера на основе микросервис-

ной архитектуры . 7

2.1 Описание требований . 7

2.2 Архитектура решения . 8

2.3 Результат работы программы . 9

ЗАКЛЮЧЕНИЕ . 10

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ . 11

ВВЕДЕНИЕ

Кредитные конвейеры имеют важную роль в банковской сфере, так как

именно через эти системы у банков появляются новые клиенты. Задача кредит-

ных конвейеров автоматизировать и ускорить максимальное количество задач

при выдаче кредитов. Со стороны бизнеса постоянно появляется множество

новых требований, поэтому архитектура кредитных конвейеров должна стро-

иться таким образом, чтобы различные части системы были независимыми и

можно было вводить новый функционал быстро в эксплуатацию.

Создание кредитных конвейеров на основе микросервисов позволяет

удовлетворить быстрорастущим требованиям банков. Поэтому в рамках дан-

ной работы была выделена актуальная задача: исследовать возможности и пре-

имущества микросервисной архитектуры при создании кредитного конвейера.

Для решения этой задачи были поставлены следующие цели:

1. изучить архитектуру построения систем на базе микросервисов;

2. создать служебные сервисы, необходимые для администрирования мик-

росервисов и автоматизации их взаимодействия между собой;

3. реализовать сервис ввода данных о клиенте;

4. разработать сервис автоматического принятия решения о выдаче креди-

та;

5. использовать движок бизнес-процесса для маршрутизации кредитных

заявок.

3

1 Использование микросервисной архитектуры при создании

кредитного конвейера

Кредитный конвейер предназначен для автоматизации процесса обработ-

ки кредитной заявки на потребительские кредиты физических лиц [1].

Он обеспечивает бесперебойный доступ к актуальной информации по

кредитным заявкам клиентов банка и позволяет:

— Подобрать кредитный продукт при помощи функционала кредитного

калькулятора на основании представленной клиентом информации;

— Сформировать и распечатать предварительный график погашения плате-

жей и предварительный расчет;

— зарегистрировать заявку и ввести краткую информацию по клиенту;

— прикрепить фото клиента, документы, предоставленные клиентом;

— осуществить полный ввод данных по всем участникам кредитной заявки

по приложенным скан-копиям документов;

— ввести данные по имуществу, предоставляемому в залог;

— выполнить проверку залога, и приложить к заявке заключение о прове-

дении проверки;

— выполнить проверку службой безопасности и телефонную верификацию

участников кредитной заявки;

— на основании результатов автоматических и ручных проверок принять

решение по заявке;

— распечатать договорную базу, автоматически сформированную по бан-

ковским шаблонам;

— приложить к заявке скан-копии документов, подписанных клиентом;

— осуществить контроль корректности приложенных к заявке документов;

— автоматически перевести заявку на следующий этап ее обработки и на-

значить на исполнение сотруднику подразделения;

— перераспределить заявки между сотрудниками подразделения;

— отследить действия пользователей и собрать статистику по текущим за-

явкам;

— отредактировать системные справочники и настроить поведение элемен-

тов экранных форм без внесения изменений в программный код;

— внести информацию по Партнерам.

Наличие большого количества возможностей кредитного конвейера при-

4

водит к декомпозиции общей системы на множество подсистем, которые долж-

ны взаимодействовать между собой. Сервис-ориентированная архитектура

(SOA) давно применяется при разработке кредитных конвейеров в части ин-

теграции с внешними системами. Наследником сервис-ориентированного под-

хода является микросервисная архитектура (MSA), которая разделяет прило-

жение на части, каждая из которых выполняет свою конкретную задачу.

1.1 Микросервисная архитектура

Микросервисная архитектура — это подход к созданию приложения, под-

разумевающий отказ от единой, монолитной структуры. То есть вместо того

чтобы исполнять все ограниченные контексты приложения на сервере с по-

мощью внутрипроцессных взаимодействий, мы используем несколько неболь-

ших приложений, каждое из которых соответствует какому-то ограниченному

контексту. Причём эти приложения работают на разных серверах и взаимодей-

ствуют друг с другом по сети, например по протоколу HTTP [2].

Свойства, характерные для архитектуры микросервисов:

— Модули можно легко заменить в любое время

— Модули организованы вокруг функций, например, пользовательский ин-

терфейс, логистика, выставление счета и т. д.

— Модули могут быть реализованы с использованием различных языков

программирования, баз данных, аппаратных средств и программного

обеспечения, в зависимости от того, что подходит лучше всего

— Архитектура симметричная, а не иерархическая (производитель-потре-

битель)

Типы микросервисной архитектуры:

— Service Discovery — сервисы знают друг о друге и общаются напрямую

— Message Bus — сервисы реализованы по шаблону издатель-подписчик,

но при этом ничего не знают друг о друге, т.е. самым важным объектом

являются сообщения

— Hybrid — смешанный вариант Service Discovery и Message Bus

Простейший вариант Service Discovery, когда клиент напрямую обраща-

ется к сервисам. При таком подходе сервис клиента сильно связан с осталь-

ными сервисами, т.к. в его конфигурации зашиты адреса сервисов. В такой

ситуации нельзя создавать экземпляры уже существующих сервисов.

Существует два вида решения такой проблемы. Первым вариант — Server-

5

Side Service Discovery. При Server-Side Service Discovery клиент взаимодей-

ствует не напрямую с конкретным сервисом, а с выравнивателем нагрузки

(load balancer).

Load balancer берет все данные у service registry. Таким образом, зада-

ча load balancer — просто брать данные о местоположении сервисов из service

registry и раскидывать запросы к ним. А задача service registry — хранить реги-

страционные данные сервисов, и он это делает по-разному: может опрашивать

сервисы сам, брать данные из внешнего конфигурационного файла и т. д.

Второй вариант — Client-Side Service Discovery. Здесь нет load balancer,

и сервис обращается напрямую к service registry, откуда берет адрес сервиса.

Цепочка вызовов сервисов короче, а значит работа приложения быстрее. Но

у такого решения есть минус — клиентский сервис имеет прямой доступ к

данным, поставляемым остальными сервисами.

У Service Discovery есть несколько недостатков. При реализации боль-

шого бизнес-процесса сервисы становятся более связанными друг с другом.

Более того при такой архитектуре отсутствует согласованность, а значит нару-

шена транзакционность.

Для решения проблемы транзакционности можно использовать брокера,

который будет отвечать за согласованность всех вызовов сервисов. Брокер

лежит в основе подхода Message Bus. Сервисы взаимодействуют друг с другом

через шину (брокера), который передает данные нужным сервисам в виде

сообщений. Такой подход по-другому называется Event-Driven, т.к. он основан

на событиях, происходящих в сервисах.

Однако взаимодействие через сообщения влечет проблему: передача боль-

ших объемов данных в сообщениях замедляет работу приложения. Поэтому

лучшим решением становится гибридная архитектура. Необходимо по Message

Bus отправить сообщение, что какие-то данные поменялись. После этого под-

писчики реагируют на эти данные, идут в registry, забирают по идентификато-

ру отправителя место, куда надо сходить за данными, и уже идут напрямую.

Таким образом нагрузка на шину уменьшается, сообщения обрабатываются

быстрее, а значит приложение ускоряется [3].

6

2 Разработка прототипа кредитного конвейера на основе

микросервисной архитектуры

2.1 Описание требований

Для получения практических навыков построения микросервисной архи-

тектуры был разработан прототип кредитного конвейера, разбитый на несколь-

ко микросервисов в соответствии с различными этапами БП.

Атрибутный состав бизнес-объекта «Кредитная заявка»:

— Сумма кредита

— Клиент

— Дата заведения

— Процентная ставка

— Срок кредита

— Название кредитного продукта

— Исполнитель

— Статус

Атрибутный состав бизнес-объекта «Клиент»:

— Фамилия, имя, отчество

— Дата рождения

— ИНН

— СНИЛС

— Адрес

— Общий доход

— Семейное положение

Сервис принятия решений должен на основе информации, введенной

на ручном этапе ввода данных о клиенте, анализировать надежность клиента

банка и возвращать решение по данной кредитной заявке.

Помимо этого одной из задач было изучение новых технологий в рамках

разработки данного решения и расширение технологического стека, использу-

емого при построении систем автоматизации выдачи кредитов.

7

2.2 Архитектура решения

Было разработано приложение, основанное на микросервисной архитек-

туре, состоящее из компонентов, взаимодействующих между собой по REST

API. За счет этого достигнута слабая связность кода и разделение обязанно-

стей. При разработке использовались технологии, содержащие в себе множе-

ство решений «из коробки», что позволило ускорить процесс конфигурации

и развертывания без большого количества ресурсов. Также при разработке

использовались такие шаблоны, как Service Discovery, Gateway, Dependency

Injection.

Настройки каждого Docker-контейнера, в котором разворачивается от-

дельный сервис, прописаны в соответствующих Dockerfile.

Исходный код сервисов написан на Kotlin, сами модули собираются ин-

струментом сборки Gradle. Для развертывания приложений во встроенном кон-

тейнере сервлетов Apache Tomcat используется Spring Boot [4]. Для реализации

RESTful интерфейсов разработаны REST-контроллеры, обрабатывающие GET

и POST запросы по HTTP протоколу.

Состав сервисов:

— bpm — Сервис работы с БП

— data-input — Сервис ввода данных

— make-decision — Сервис принятия решения

— service-registry — Реестр сервисов

— gateway — Шлюз

8

2.3 Результат работы программы

Для демонстрации работы прототипа кредитного конвейера необходимо

зайти в веб-интерфейс сервиса ввода данных и создать заявку. Далее запол-

нить заявку данными и нажать кнопку «Продолжить». После возвращения на

стартовую страницу можно увидеть результат принятия решения, проверив

колонку «Статус» в таблице с кредитными заявками (рисунок 1).

Рисунок 1 – Результат принятия решения

9

ЗАКЛЮЧЕНИЕ

В рамках данной работы были исследованы возможности и преимуще-

ства микросервисной архитектуры при создании кредитного конвейера. Для

решения этой задачи было сделано следующее:

1. изучена архитектура построения систем на базе микросервисов;

2. созданы служебные сервисы, необходимые для администрирования мик-

росервисов и автоматизации их взаимодействия между собой;

3. реализован сервис ввода данных о клиенте;

4. разработан сервис автоматического принятия решения о выдаче кредита;

5. использован движок бизнес-процесса для маршрутизации кредитных за-

явок.

При выполнении работы я познакомился с принципами построения мик-

росервисных систем и закрепил полученные знания на практике. Разрабо-

танный прототип кредитного конвейера на микросервисах стал основой при

создании более масштабного проекта Neoflex в рамках участия в тендере на

разработку программного обеспечения, проводимого одним из крупнейших

российских банков.

10

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1 Кредитный конвейер [Электронный ресурс]. — URL: https://www.

neoflex.ru/solutions/front-ofis (Дата обращения 12.05.2018). Загл. с

экр. Яз. рус.

2 Newman, S. Building Microservices / S. Newman. — London: O’Reilly, 2015.

3 What are microservices? [Электронный ресурс]. — URL: http://

microservices.io (Дата обращения 16.05.2018). Загл. с экр. Яз. англ.

4 Guthrie, J. Spring Microservices in Action / J. Guthrie. — New York: Manning,

2017.

11

https://www.neoflex.ru/solutions/front-ofis
https://www.neoflex.ru/solutions/front-ofis
http://microservices.io
http://microservices.io

	ВВЕДЕНИЕ
	Использование микросервисной архитектуры при создании кредитного конвейера
	Микросервисная архитектура

	Разработка прототипа кредитного конвейера на основе микросервисной архитектуры
	Описание требований
	Архитектура решения
	Результат работы программы

	ЗАКЛЮЧЕНИЕ
	СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

