
Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ

ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ

«САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ

ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ

ИМЕНИ Н.Г.ЧЕРНЫШЕВСКОГО»

Кафедра математической

кибернетики и компьютерных наук

РАЗРАБОТКА ОТКАЗОУСТОЙЧИВОГО САЙТА ДЛЯ ХУДОЖНИКОВ

С ТРЁХМЕРНОЙ ГАЛЕРЕЕЙ И ПОДДЕРЖКОЙ ВИРТУАЛЬНОЙ

РЕАЛЬНОСТИ

АВТОРЕФЕРАТ БАКАЛАВРСКОЙ РАБОТЫ

студента 4 курса 411 группы

направления 02.03.02 —Фундаментальная информатика и информационные

технологии

факультета КНиИТ

Давыдова Виктора Вениаминовича

Научный руководитель

доцент, к.ф.-м. н. И.А.Батраева

Заведующий кафедрой

к.ф.-м. н. С.В.Миронов

Саратов 2018

СОДЕРЖАНИЕ

ВВЕДЕНИЕ . 3

1 Технологии разработки приложений на основе веб-сервисов. 4

1.1 Контейнер Сервлетов . 4

1.2 Принцип разработки ПО IoC . 4

1.3 Шаблон проектирования DI . 4

1.4 DAO . 5

1.5 DTO . 5

1.6 Шаблон проектирования MVC . 5

1.7 ORM . 6

1.8 SOLID . 6

1.9 Docker . 7

1.10 Three.js . 7

2 Разработка приложения «Хранитель Творческих Миров» 8

2.1 Проект —Хранитель Творческих Миров . 8

2.1.1 О приложении . 8

ЗАКЛЮЧЕНИЕ . 11

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ . 12

ВВЕДЕНИЕ

Современные стандарты деятельности предприятий требуют высокой

мобильности, доступности, кросс-платформенности для приложений, кото-

рые обеспечивают их работу. Кроме того во многих случаях предпочтитель-

но снижение нагрузки на клиентов, как с точки зрения обеспечения безопас-

ности, так и с точки зрения будущих обновлений и масштабирования при-

ложения. Поэтому для многих программных продуктов использование веб-

технологий при разработке стало насущной необходимостью.

Целью дипломной работы является изучение современных технологий

построения веб-сервисов. Для выполнения заданной цели были поставлены

следующие задачи:

— изучение функционирования контейнеров сервлетов;

— разработка приложений при помощи фреймворка Spring;

— изучение принципа разработки программного обеспечения IoC (Inversion

of Control) — инвертирование управления приложением;

— изучение процесса DI (Dependency Injection) — разрешение (обеспече-

ние), внедрение зависимостей;

— изучение шаблона проектирования DAO (Data Access Object) — объект

доступа к данным;

— изучение шаблона проектирования MVC (Model, View, Controller) — мо-

дель, представление, контроллер;

— понимание пяти принципов построения программных продуктов SOLID

— запуск сервиса-приложения при помощи docker-swarm, тем самым обес-

печивая его отказоустойчивость;

— изучение методов построения трёхмерных сцен и моделей при помощи

Three.js.

3

1 Технологии разработки приложений на основе веб-сервисов

1.1 Контейнер Сервлетов

Веб-сервер — комплекс программ, обеспечивающий выдачу статических

веб-страниц пользователям в ответ на их запросы, посредством (HTTP). Он

может располагаться, как на физически существующей машине, так и в вир-

туальной среде.

Контейнер сервлетов (или веб-контейнер) — основная часть веб-сервера,

которая отвечает за обработку запросов и выдачу соответствующих им отве-

тов.

Сервлет — интерфейс определённый в пакете javax.servlet. Он опре-

деляет три основных метода, отвечающих за жизненный цикл сервлета —

init() (создание и инициализация), service() (обработка входящих запро-

сов) и destroy (уничтожение, освобождение ресурсов). Они реализуются каж-

дым сервлетом и каждый из них запускается сервером в определённое время.

Исходя из жизненного цикла объекта сервлета можно заключить, что

классы сервлетов загружаются в контейнер, загрузчиком классов, динамиче-

ски. Каждый запрос находится на обработке в собственном потоке, а объект

сервлета может одновременно обслуживать несколько потоков. Когда поток

более не используется, он должен быть зачищен сборщиком мусора JVM.

Реализация Сервлета является Java-программой и, как и любая про-

грамма на Java, сервлет работает в JVM. Чтобы справиться со сложностью

HTTP-запросов, появляется контейнер сервлета. Контейнер сервлета отвеча-

ет за создание, выполнение и уничтожение сервлетов.

1.2 Принцип разработки ПО IoC

IoC (Inversion of Control) — это принцип разработки программного обес-

печения, при помощи которого управление объектами или частями програм-

мы передаётся контейнеру или фреймворку. Этот принцип чаще всего ис-

пользуется в контексте объектно-ориентированного программирования.

1.3 Шаблон проектирования DI

DI (Dependency Injection, инъекция зависимостей) — это шаблон проек-

тирования программного обеспечения, при котором один объект (или стати-

ческий метод) предоставляет зависимости другого объекта. Зависимость —

4

это объект, который может быть использован (сервис). Инъекция— это пере-

дача зависимости зависимому объекту (клиенту), который будет его исполь-

зовать. Сервис включается в состояние клиента. Передача сервиса клиенту,

а не предоставление клиенту возможности создавать или находить сервис,

является основополагающим требованием шаблона.

1.4 DAO

В компьютерном программном обеспечении объект доступа к данным

(DAO) является объектом, который предоставляет абстрактный интерфейс

для какого-либо типа базы данных или другого механизма сохранения дан-

ных. Путем сопоставления вызовов приложений на уровне персистентности

DAO предоставляет необходимые операции с данными, не раскрывая дета-

ли реализации базы данных. Эта изоляция соответствует принципу единой

ответственности. Она разделяет доступ к базе данных необходимый приложе-

нию с точки зрения объектов и типов данных (публичного интерфейса DAO),

от того, как этот доступ может быт выполнен конкретной СУБД, схемой базы

данных и т.д. (Реализация DAO).

1.5 DTO

Data Transfer Object (DTO)— объект передачи данных, который осу-

ществляет передачу данных между процессами. Причины для его исполь-

зования заключается в том, что связь между процессами обычно осуществ-

ляется с использованием удаленных интерфейсов (например, веб-служб), где

каждый вызов является дорогостоящей операцией. Поскольку большая часть

стоимости каждого вызова связана с временем прохода между клиентом и

сервером, одним из способов уменьшения количества вызовов является ис-

пользование объекта (DTO), который объединяет данные, которые были бы

переданы несколькими вызовами, в один большой вызов [6].

1.6 Шаблон проектирования MVC

MVC— аббревиатура —Model, View, Controller — модель, представление

и контроллер. MVC— подход организации программного кода являющийся

хорошей практикой на данный момент. Главная идея MVC заключается в

том, что код приложения разделяется по различным ролям. Одни блоки кода

отвечают за содержание и управление данными приложения, другие за орга-

5

низацию внешнего, пользовательского представления приложения, а третьи

за обработку запросов поступающих приложению от пользователей [8].

1.7 ORM

ORM (Object-Relational Mapping) — объектно-реляционное отображение,

технология программирования, отвечающая за связывание баз данных с те-

зисами объектно-ориентированных языков программирования. Данная тех-

нология отвечает за создание виртуальной, объектной базы данных.

Данная технология решает задачу обеспечения работы с базами дан-

ных в терминологии классов-структур, а не таблиц данных. Она отвечает

за преобразование моделей классов в языке программирования в структуры,

которые можно хранить в базах данных. Данная технологии предоставля-

ет интерфейс для выполнения базовых (CRUD) операций в базе данных вне

зависимости от её диалекта.

Hibernate — библиотека Java с открытым исходным кодом реализующая

принцип ORM. Фреймворк Hibernate позволяет сопоставлять классы Java с

таблицами базы данных и типами данных языка Java с типами данных SQL

и предоставляет механизмы для осуществления запросов к базе данных.

1.8 SOLID

Пять принципов проектирования в ООП, предназначенных для того,

чтобы делать программные проекты более понятными, гибкими и поддер-

живаемыми. Такие методологии, как гибкая разработка (Agile) или адап-

тированная разработка (Adaptive Software) программного обеспечения фор-

мируются на основе этих принципов, применимых к любому объектно-ори-

ентированному дизайну. SOLID — термин, описывающий набор принципов

разработки для эффективного кода.

Акроним SOLID значит:

— Принцип единственной ответственности (Single-Responsibility Principle,

SRP) гласит, что на каждый класс должна быть возложена одна-един-

ственная обязанность. Для изменения класса может существовать толь-

ко одна причина.

— Принцип открытости/закрытости (Open/Closed Principle, OCP): Сущ-

ности (классы, модули, функции и т.п.) должны быть открытыми для

расширения, но закрытыми для модификации.

6

— Принцип подстановки Барбары Лисков (Liskov Substitution Principle,

LSP): «объекты в программе должны быть заменяемыми на экземпля-

ры их подтипов без изменения правильности выполнения программы».

Наследующий класс должен дополнять, а не изменять базовый.

— Принцип разделения интерфейса (Interface Segregation Principle или ISP):

«множество специализированных интерфейсов, лучше, чем один интер-

фейс общего назначения». Идея состоит в том, чтобы сохранить компо-

ненты ориентированными на решение своих задач и попытаться мини-

мизировать зависимости между ними.

— Принцип инверсии зависимостей (Dependency Inversion Principle или

DIP) «Зависимость на Абстракциях. Нет зависимости на что-то кон-

кретное» Зависимости внутри системы строятся на основе абстракций.

Модули верхнего уровня не зависят от модулей нижнего уровня.

1.9 Docker

Docker — это мировой лидер программного обеспечения контейнерной

платформы. Разработчики используют Docker чтобы исключить проблемы

связанные с работой на своём компьютере, когда работаешь совместно с дру-

гими людьми. Операторы используют Docker чтобы запускать и управлять

приложениями рядом друг с другом в изолированных контейнерах, чтобы

получить наилучшую компактность. Во время работы над большими проек-

тами, Docker используется для быстрого выпуска очередной версии продукта

чтобы задействовать новые возможности быстрее, более безопасно, как на

Linux, так и Windows системах.

1.10 Three.js

Three.js — это кросс-браузерная библиотека JavaScript и интерфейс при-

кладного программирования (API), используемый для создания и отобра-

жения анимированной трёхмерной компьютерной графики в веб-браузере.

Three.js использует WebGL. Её исходный код размещен в репозитории на

сайте GitHub.

7

2 Разработка приложения «Хранитель Творческих Миров»

2.1 Проект —Хранитель Творческих Миров

Данный проект создавался с целью изучения современных подходов к

построению веб-сервисов, изучения технологий виртуальной реальности, а

также для того, чтобы понять, как осуществляется разработка программных

продуктов в области знаний никак не связанной с программированием или

иными техническими специальностями.

Идея сервиса-сайта заключается в предоставлении художнику плат-

формы, где он сможет сформировать виртуальный мир, в котором должны

существовать его произведения искусства. У него должны быть возможности

по загрузке своих картин в специальную галерею картин, из которой он их,

впоследствии, сможет взять и разместить в трёхмерном, виртуальном мире-

галерее. Этот мир должен поддаваться гибкой настройке, к примеру должна

быть возможность менять структуру галереи-мира, фон пола, стен и потолка.

У всякого проекта должна быть идея, которая бы вселяла в пользовате-

лей интерес к проекту, и желание стать его частью. Так и у данного сервиса

есть идея.

Рисунок 1 – Хранитель творческих миров

Она заключается в существовании мифического хранителя творческих

миров — мудрого старца-искусствоведа, который может перемещать картины

и прочие изделия искусства из нашего мира в тот, что им подходит более

всего.

2.1.1 О приложении

Проект написан с использованием технологий Spring MVC иWeb Servlets,

на языке программирования Java. Веб-приложение является адаптивным, это

8

достигается при помощи Bootstrap. При реализации проекта были задейство-

ваны шаблоны проектирования MVC и DAO. Также его написание осуществ-

лялось в соответствии с принципами SOLID, DI и IoC. Запуск проекта осу-

ществляется в контейнере Docker, запущенном в режиме swarm (роя). За счёт

этого осуществляется отказоустойчивость.

Шаблон проектирования MVC подразумевает распределение кода по

модулям, каждый из которых отвечает за решение отведённых ему задач.

Данные модули называются package (пакеты):

— Controller — содержит все контроллеры проекта

— Model — содержит основные модели проекта, структуры данных исполь-

зуемые в нём для хранения информации

— View— содержит все представления проекта

Для работы сервиса также необходим доступ к базе данных. Он реали-

зован посредством паттерна DAO. Взаимодействие с базой осуществляется

через ORM Hibernate.

Главная страница приложения выглядит так:

Рисунок 2 – Главная страница приложения-сайта

На ней есть кнопки регистрации и входа в систему. Также на ней изоб-

ражаются фотографии миров с их кратким описанием.

Вот как выглядит виртуальный мир:

9

Рисунок 3 – Вид 1

Переход в виртуальную реальность осуществляется посредством очков

виртуальной реальности и смартфона.

Оптическая система глаз устроена так, что изображения получаемые с

каждого глаза преобразуются в одно. Поэтому человек видит одну картинку,

а не две. По такому же принципу работает трёхмерное зрение. Окно браузера

смартфона разбивается на две одинаковые части с одним и тем же изображе-

нием. Смартфон помещается в очки виртуальной реальности и изображения

галереи проходя через линзы равномерно передаются на глаза человека и

преобразуются в одну картинку виртуального мира.

Рисунок 4 – Окно браузера для перехода в виртуальную реальность

10

ЗАКЛЮЧЕНИЕ

В результате выполнения выпускной квалификационной работы было

разработано веб-приложение «Хранитель Творческих Миров», представляю-

щее собой виртуализированную галерею миров. Приложение реализовано с

использованием таких шаблонов проектирования, как MVC и DAO, принци-

пов организации программных продуктов SOLID, DI и IoC, а также библио-

теки позволяющей моделировать трёхмерные сцены—Three.js.

Разработанный проект может быть использован для помощи художни-

кам в публикации их работ и, одновременно, построения виртуального мира

дополняющего эти работы, ведь, порой нельзя всё выразить на одном хол-

сте —фантазия не имеет границ.

11

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

1 WEB приложение [Электронный ресурс]. — URL: http://java-online.

ru/java-web.xhtml (Дата обращения 11.05.2018). Загл. с экр. Яз. рус.

2 Dependency Injection with the Spring Framework [Электронный

ресурс]. — URL: http://www.vogella.com/tutorials/

SpringDependencyInjection/article.html (Дата обращения

27.05.2018). Загл. с экр. Яз. рус.

3 Первые шаги в VR [Электронный ресурс]. — URL: https://medium.com/

high-technologies-center/first-steps-in-vr-dbb5990822f6 (Дата

обращения 15.05.2018). Загл. с экр. Яз. рус.

4 Intro to Inversion of Control and Dependency Injection with

Spring [Электронный ресурс]. — URL: http://www.baeldung.com/

inversion-control-and-dependency-injection-in-spring (Дата

обращения 22.05.2018). Загл. с экр. Яз. рус.

5 Guides and such [Электронный ресурс]. — URL: http://hibernate.org/

orm/documentation/5.3/ (Дата обращения 21.05.2018). Загл. с экр. Яз.

рус.

6 Bootstrap [Электронный ресурс]. — URL: https://getbootstrap.com/

(Дата обращения 17.05.2018). Загл. с экр. Яз. рус.

7 Spring Persistence Tutorial [Электронный ресурс]. — URL: http:

//www.baeldung.com/persistence-with-spring-series/ (Дата

обращения 09.05.2018). Загл. с экр. Яз. рус.

8 Spring Bean Scopes [Электронный ресурс]. — URL: https:

//howtodoinjava.com/spring5/core/spring-bean-scopes-tutorial/

(Дата обращения 16.05.2018). Загл. с экр. Яз. рус.

9 Model View Controller Pattern [Электронный ресурс]. — URL: http:

//best-practice-software-engineering.ifs.tuwien.ac.at/

patterns/mvc.html (Дата обращения 03.05.2018). Загл. с экр. Яз.

рус.

10 What is docker. — URL: https://www.docker.com/what-docker (Дата

обращения 05.05.2018). Загл. с экр. Яз. англ.

12

http://java-online.ru/java-web.xhtml
http://java-online.ru/java-web.xhtml
http://www.vogella.com/tutorials/SpringDependencyInjection/article.html
http://www.vogella.com/tutorials/SpringDependencyInjection/article.html
https://medium.com/high-technologies-center/first-steps-in-vr-dbb5990822f6
https://medium.com/high-technologies-center/first-steps-in-vr-dbb5990822f6
http://www.baeldung.com/inversion-control-and-dependency-injection-in-spring
http://www.baeldung.com/inversion-control-and-dependency-injection-in-spring
http://hibernate.org/orm/documentation/5.3/
http://hibernate.org/orm/documentation/5.3/
https://getbootstrap.com/
http://www.baeldung.com/persistence-with-spring-series/
http://www.baeldung.com/persistence-with-spring-series/
https://howtodoinjava.com/spring5/core/spring-bean-scopes-tutorial/
https://howtodoinjava.com/spring5/core/spring-bean-scopes-tutorial/
http://best-practice-software-engineering.ifs.tuwien.ac.at/patterns/mvc.html
http://best-practice-software-engineering.ifs.tuwien.ac.at/patterns/mvc.html
http://best-practice-software-engineering.ifs.tuwien.ac.at/patterns/mvc.html
https://www.docker.com/what-docker

	ВВЕДЕНИЕ
	Технологии разработки приложений на основе веб-сервисов
	Контейнер Сервлетов
	Принцип разработки ПО IoC
	Шаблон проектирования DI
	DAO
	DTO
	Шаблон проектирования MVC
	ORM
	SOLID
	Docker
	Three.js

	Разработка приложения <<Хранитель Творческих Миров>>
	Проект — Хранитель Творческих Миров
	О приложении

	ЗАКЛЮЧЕНИЕ
	СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

