
Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ
УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САРАТОВСКИЙ НАЦИОНАЛЬНЫЙ

ИССЛЕДОВАТЕЛЬСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ
ИМЕНИ Н.Г. ЧЕРНЫШЕВСКОГО»

Кафедра геометрии

Визуализация гладких отображений многообразий

АВТОРЕФЕРАТ БАКАЛАВРСКОЙ РАБОТЫ

студента 4 курса 421 группы

направления 02.03.01 – Математика и компьютерные науки

профиль подготовки: Математические основы компьютерных наук

механико-математического факультета

ФИЛОНОВА ЕГОРА ВАСИЛЬЕВИЧА

Научный руководитель

доцент, к.пед.н. А.В. БУКУШЕВА

Зав. кафедрой

доктор физ-мат. наук, профессор В.В. РОЗЕН

Саратов 2018



ВВЕДЕНИЕ

Актуальность работы. Многие теоремы в математике утверждают,

что любое пространство из данного определенного класса всегда является

подпространством некоторого "стандартного" пространства из этого класса.

Это такие теоремы, как теорема Уитни о вложении гладких многообразий в

Rm, теорема Нэша о вложении римановых многообразий в Rm и т.д. Теоремы

вложимости интересны не только сами по себе, но и как инструменты для ре-

шения других задач. Одной из проблем топологии является более проблема

существования вложения данного пространства в Rm для данного m.

Цели и задачи работы.

Цель бакалаврской работы - разработать программы на языке Wolfram

Language для визуализации гладких отображений многообразий.

Для достижения цели поставлены следующие задачи:

- изучить основные понятия теории гладких многообразий (гладкое мно-

гообразие, гладкое отображение, касательное пространство, погружение и

вложение многообразий в евклидово пространство);

- изучить программирование в среде Wolfram Mathematica;

- визуализировать гладкие отображения многообразий в Wolfram

Mathematica (погружение бутылки Клейна в трехмерное евклидово про-

странство, вложение тора в четырехмерное евклидово пространство).

Описание структуры работы. Бакалаврская работа состоит из вве-

дения, четырех разделов, заключения, списка использованных источников,

содержащего 20 наименований. Объем работы 40 страниц.
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Краткая характеристика материалов работы. В первом разделе да-

ны определения гладкого многообразия, касательного пространства. Во вто-

ром разделе определяется гладкое отображение. В третьем разделе рассмат-

ривается вложение и погружение многобразий в евклидово пространство.

В четвертом разделе представлена визуализация некоторых гладких отоб-

ражений. Программный код написан на языке программирования Wolfram

Language в оболочке лаборатории программирования Wolfram Programming

Lab. В заключении сделаны выводы по выполнению бакалаврской работы.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Пусть M и N - два гладких многообразия, f : M → N - непрерывное

отображение.

Отображение f : M → N гладких многообразий называется гладким

отображением класса Cr, если для любых локальных систем координат

(x1, ..., xn) в окрестности любой точки P0 ∈ M и (y1, ..., ym) в окрестности

точки Q0 = f(P0) ∈ N представления функции f в виде вектор-функции

y = (yk = (hk(x1, ..., xn)) = h(x) является вектор функции класса Cr.

Определение гладкого отображения класса гладкости Cr имеет смысл

только в том случае,когда классы гладкости многообразий и N не меньше,

чем r.

Пусть f : M → N - гомеоморфизм многообразий. Если f является глад-

ким отображением класса Cr, то обратное отображение f−1 не обязано быть

гладким отображением. В случае, когда обратное отображение f−1 : M → N
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тоже является гладким отображением класса Cr, гомеоморфизм f называ-

ют гладким гомеоморфизмом класса Cr или диффеоморфизмом класса Cr.

Диффеоморфизмы гладких многообразий, если f : M → N - диффеомор-

физм, то многообразия M и N называются диффеоморфными многообрази-

ями.

Гладкое отображение k-мерного гладкого многообразия в n-мерное глад-

кое многообразие, где k ≤ n, имеющее максимальный ранг k в каждой точке,

называется погружением.

Определение погружения можно сформулировать иначе. Гладкое отобра-

жение f : M → N называется погружением, если для любой точки p ∈ M

дифференциал dpf : TpM → Tf(p)N инъективен (следовательно, dimM ≤

dimN).

Гладкое отображение f : M1 →M2 многообразия размерности k в много-

образие размерности n ≥ k называется вложением, если

1. оно взаимно однозначно отображает M1 на f(M1);

2. оно имеет максимальный ранг k в каждой точке;

3. для каждой точки A ∈M1 найдется сколь угодно малая ее окрестность

U ⊂M1 и окрестность V точки f(A) = B ∈M2 так, что V ∩ f(M1) = f(U).

Иными словами, погружение f называется вложением, если f есть го-

меоморфизм многообразия M на f(M).

Если f : M → N - инъективное погружение и многообразие компактно,

то f - вложение.

Пусть - гладкое многообразие. Множество A ⊂M является подмногооб-
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разием тогда и только тогда, когда оно есть образ некоторого вложения.

Пример 1. f : R→ R2, f(t) = (t, t2) - вложение (рисунок 1).

Рисунок 1 - Вложение.

Пример 2. f : (−π
2 ,

3π
2 )→ R2, f(t) = (cos(t), sin(2t)) - погружение (рису-

нок 2).

Рисунок 2 - Погружение.

Пример 3. Рассмотрим отображение f : S1 → R2, заданное формулами

f(ϕ) = {cosϕ, sin 2ϕ}. Вектор скорости равен df/dϕ = {− sinϕ, 2 cos 2ϕ}

и ни в какой точке не обращается в нуль, т.е. ранг матрицы Якоби равен

единице. Поэтому f является погружением.

Пример погружения окружности S1 в плоскости R2, не являющегося вло-

жением, приведен на рисунке 3.
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Рисунок 3 - Погружение, не являющееся вложением.

Пример 4. Рассмотрим отображение fa : R1 → R2, где f(t) = (t2, t3+at).

Ясно, что J(f) = (2t, 3t2 + a).

Если a 6= 0, то fa - погружение (рисунок 4).

fa - вложение ⇔ a > 0.

Рисунок 4 - Отображение f(t) = (t2, t3 + at) при a = −1, 0, 1.
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Теорема (слабая теорема Уитни). Пусть M - гладкое компактное мно-

гообразие. Тогда существует вложение ϕ : M → Rn для подходящего выбо-

ра размерности n.

Теорема Уитни показывает, что всякое компактное многообразие мож-

но считать подмногообразием евклидова пространства достаточно большой

размерности.

Например, сфера Sn вкладывается в Rn+1, а тор T n вкладывается в R2n.

Проективная плоскость RP 2 не вкладывается в R3, однако может быть

вложена в R5. В самом деле, пусть (x1 : x2 : x3)- однородные координаты

точки P в RP 2. Положим

y1 =
x21

x21 + x22 + x23
, y2 =

x22
x21 + x22 + x23

,

y3 =
x23

x21 + x22 + x23
, y4 =

x1x2
x21 + x22 + x23

,

y5 =
x2x3

x21 + x22 + x23
, y6 =

x3x1
x21 + x22 + x23

.

Получаем отображение

g : RP 2 −→ R6, g(P ) = g(x1 : x2 : x3) = (y1, y2, y3, y4, y5, y6).

На самом деле, образ отображения g лежит в линейном подпространстве

R5 ⊂ R6, задаваемом уравнением y1 + y2 + y3 = 1.

Теорема (сильная теорема Уитни). Любое гладкое n-мерное многообра-

зие можно погрузить в R2n−1 и можно вложить R2n.

Пример 5. Примером погружения вещественной проективной плоскости

в трехмерное евклидово пространство является поверхность Боя. Поверх-

ность представлена на рисунке 5.
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Рисунок 5 - Поверхность Боя.

Пример 6. Погружение бутылки Клейна определяется следующими па-

раметрическими уравнениями:

x1 = cosu, x2 = sinu,

x3 = a sin(v +
u

2
), x4 = b sin 2(v +

u

2
).

Рисунок 6 - Проекция бутылки Клейна на трехмерное пространство.
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Рисунок 7 - Проекция бутылки Клейна на трехмерное пространство в разрезе.

При фиксированном значении u получается лемниската Бернулли, рас-

положенная в плоскости, параллельной Ox3x4.

Рисунок 8 - Лемниската Бернулли.

ЗАКЛЮЧЕНИЕ

В данной работе показаны некоторые возможности использовании систе-

мы Mathematica при решении задач дифференциальной геометрии.
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В бакалаврской работе рассмотрены понятия: гладкого многообразия, ка-

сательного пространства, вложения, погружения.

В работе решены следующие задачи визуализации в Wolfram

Mathematica: простые погружения и вложения на евклидовой плоско-

сти, погружение бутылки Клейна в евклидово пространство, вложение тора

в четырехмерное евклидово пространство.
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